Алканы — номенклатура, получение, химические свойства. Алканы Физические свойства алканов

Гомологический ряд алканов

Алканы (предельные или насыщенные углеводороды, парафины) – углеводороды, атомы углерода в которых соединены простыми связями. Общая формула: .
Соотношение числа атомов водорода и углерода в молекулах алканов максимально по сравнению с молекулами углеводородов других классов.
Поскольку, все валентности углерода заняты либо углеродами, либо водородами, как правило, химические свойства алканов не очень ярко выражены, поэтому их еще называют предельными или насыщенными углеводородами. И существует еще более древнее название, лучше отражающее их относительную, конечно, химическую инертность – парафины , что переводится как «лишенные сродства».

Строение молекул

Атомы углерода в алканах находятся в состоянии – гибридизации , и молекулу алканов можно представить как набор тетраэдрических структур углерода, связанных между собой и с водородам.

Тетраэдрическое строение метана

Связи между атомами и прочные, практически неполярные (очень мало полярные).
Атомы вокруг простых связей постоянно вращаются. Поэтому молекулы алканов могут принимать разные формы. При этом длина связи и угол между связями остаются постоянными. Формы, переходящие друг в друга за счет вращения молекулы вокруг -связей, называют конформациями молекулы.

Номенклатура алканов

Первые четыре члена ряда алканов имеют исторически сложившиеся названия. Названия неразветвленных алканов с пятью и более атомами углерода в молекуле, образованы от греческих числительных, отражающих это число атомов углерода.
Суффикс -ан показывает принадлежность вещества к насыщенным соединениям.
Составляя названия разветвленных алканов по номенклатуре ИЮПАК, в качестве основной цепи выбирают цепь, содержащую максимальное число атомов углерода. Основную цепь нумеруют таким образом, чтобы заместители получили наименьшие номера . Если цепей одинаковой длины несколько, то главной выбирают цепь, содержащую наибольшее число заместителей.

Физические свойства алканов

Температуры плавления и кипения в целом увеличиваются с увеличением числа атомов в молекуле. Первые представители ряда алканов – газы при н.у., алканы, содержащие от 5 до 15 атомов – обычно жидкости, свыше 15 атомов – твердые вещества.
Неразветвленные изомеры имеют более высокую температуру кипения, чем разветвленные (причина – разные силы межмолекулярного взаимодействия). Температуры плавления зависят, кроме того, от плотности упаковки молекул в кристалле.
Газообразные и твердые алканы не пахнут, жидкие алканы обладают характерным “бензиновым” запахом.
Все алканы бесцветны, легче воды и нерастворимы в ней. Алканы хорошо растворяются в органических растворителях, жидкие алканы (пентан, гексан) сами широко используются как растворители.

Химические свойства алканов

Алканы относятся к углеводородам, в которых отсутствуют кратные связи. Одно из названий углеводородов этого ряда – парафины, обозначает их химическую пассивность. Поэтому химические свойства алканов определяются таким образом:
1. Из-за предельности алканов реакции присоединения для них нехарактерны.
2. Из-за прочных связей и (короткие и практически неполярные) следует малая реакционная способность (не реагируют с кислотами, щелочами, и т.п.)
3. Неполярность связей свидетельствует о том, что реакции могут проходить по свободнорадикальному механизму.
Основной тип реакций – радикальное замещение (radical substitution) .
Разорвать связь можно при помощи нагревания или УФ-излучения. Обычно реакции алканов идут при повышенных температурах или на солнечном свету.
Реакция галогенирования.
При хлорировании атом в молекуле метана замещается на атом . В избытке хлора происходит дальнейшее замещение:
;
;
;
.
Реакция нитрования.
По механизму радикального замещения протекает реакция нитрования алканов в газовой фазе (реакция Коновалова). Условия – повышенные температура и давление.
В парообразном состоянии азотная кислота разлагается:
.
Оксид азота (IV) является радикалом . Он атакует молекулу алкана.
Итоговая реакция:
.

Горение алканов

Смесь метана с кислородом (в объёмном соотношении 1:2) или с воздухом (1:10) при поджигании сгорает со взрывом. Поэтому смеси метана, пропана, этана, бутана с воздухом очень опасны. Они иногда могут образоваться в шахтах, в мастерских, в жилых помещениях. С этими газами нужно проявлять осторожность при применении.

Углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле C n H 2 n +2 .
В молекулах алканов все атомы углерода находятся в состоянии sр 3 -гибридизации. Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторонней треугольной пирамиды - тетраэдра. Углы между орбиталями равны 109° 28′.

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), например, в молекуле н -пентана.

Особо стоит напомнить о связях в молекулах алканов. Все связи в молекулах предельных углеводородов одинарные. Перекрывание происходит по оси,
соединяющей ядра атомов, т. е. это σ-связи. Связи углерод - углерод являются неполярными и плохо поляризуемыми. Длина С-С связи в алканах равна 0,154 нм (1,54 10 — 10 м). Связи С-Н несколько короче. Электронная плотность немного смещена в сторону более электроотрицательного атома углерода, т. е. связь С-Н является слабополярной.

Отсутствие в молекулах предельных углеводородов полярных связей приводит к тому, что они плохо растворяются в воде, не вступают во взаимодействие с заряженными частицами (ионами). Наиболее характерными для алканов являются реакции, протекающие с участием свободных радикалов.

Гомологический ряд метана

Гомологи - вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН 2 .

Изомерия и номенклатура

Для алканов характерна так называемая структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкан, для которого характерны структурные изомеры, - это бутан.

Основы номенклатуры

1. Выбор главной цепи. Формирование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.
2. Нумерация атомов главной цепи. Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном удалении от конца цепи, то нумерация начинается от того конца, при котором их больше (структура В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе старший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начинается их название: метил (-СН 3), затем этил (-СН 2 -СН 3), пропил (-СН 2 -СН 2 -СН 3) и т. д.
Обратите внимание на то, что название заместителя формируется заменой суффикса -ан на суффикс —ил в названии соответствующего алкана.
3. Формирование названия . В начале названия указывают цифры - номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди - два, три - три, тетра - четыре, пента - пять) и название заместителя (метил, этил, пропил). Затем без пробелов и дефисов - название главной цепи. Главная цепь называется как углеводород - член гомологического ряда метана (метан СН 4 , этан С 2 Н 6 , пропан C 3 H 8 , С 4 Н 10, пентан С 5 Н 12 , гексан С 6 Н 14 , гептан C 7 H 16, октан C 8 H 18, нонан С 9 Н 20, декан С 10 Н 22).

Физические свойства алканов

Первые четыре представителя гомологического ряда метана - газы. Простейший из них - метан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, определяется запахом меркаптанов - серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах для того, чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).
Углеводороды состава от С 4 Н 12 до С 15 Н 32 - жидкости; более тяжелые углеводороды - твердые вещества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства алканов

Реакции замещения.
Наиболее характерными для алканов являются реакции свободнорадикального замещения, в ходе которого атом водорода замещается на атом галогена или какую-либо группу. Приведем уравнения характерных реакций галогенирования:


В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.
Реакция дегидрирования (отщепления водорода) .
В ходе пропускания алканов над катализатором (Pt, Ni, А1 2 0 3 , Сг 2 0 3) при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:


Реакции, сопровождающиеся разрушением углеродной цепи.
Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.
1. Горение предельных углеводородов - это свободнорадикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива:

В общем виде реакцию горения алканов можно записать следующим образом:

2. Термическое расщепление углеводородов.

Процесс протекает по свободнорадикальному механизму. Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием молекулы алкана и молекулы алкена:

Реакции термического расщепления лежат в основе промышленного процесса - крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

3. Пиролиз . При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества:

При нагревании до температуры 1500 °С возможно образование ацетилена:

4. Изомеризация . При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:

5. Ароматизация . Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод - углерод) связей и слабополярных С-Н (углерод - водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

ОПРЕДЕЛЕНИЕ

Алканами называются насыщенные углеводороды, молекулы которых состоят из атомов углерода и водорода, связанных между собой только σ-связями.

В обычных условиях (при 25 o С и атмосферном давлении) первые четыре члена гомологического ряда алканов (C 1 — C 4) - газы. Нормальные алканы от пентана до гептадекана (С 5 - С 17) - жидкости, начиная с С 18 и выше - твердые вещества. По мере увеличения относительной молекулярной массы, возрастают температуры кипения и плавления алканов. При одинаковом числе атомов углерода в молекуле алканы с разветвленным строением имеют более низкие температуры кипения, чем нормальные алканы. Строение молекулы алканов на примере метана приведено на рис. 1.

Рис. 1. Строение молекулы метана.

Алканы практически не растворимы в воде, так как их молекулы малополярны и не взаимодействуют с молекулами воды. Жидкие алканы легко смешиваются друг с другом. Они хорошо растворяются в неполярных органических растворителях, таких как бензол, тетрахлорметан, диэтиловый эфир и др.

Получение алканов

Основные источники различных предельных углеводородов, содержащих до 40 атомов углерода, — нефть и природный газ. Алканы с небольшим числом атомов углерода (1 - 10) можно выделить фракционной перегонкой природного газа или бензиновой фракции нефти.

Различают промышленные (I) и лабораторные (II) способы получения алканов.

C + H 2 → CH 4 (kat = Ni, t 0);

CO + 3H 2 → CH 4 + H 2 O (kat = Ni, t 0 = 200 - 300);

CO 2 + 4H 2 → CH 4 + 2H 2 O (kat, t 0).

— гидрирование непредельных углеводородов

CH 3 -CH=CH 2 + H 2 →CH 3 -CH 2 -CH 3 (kat = Ni, t 0);

— восстановление галогеналканов

C 2 H 5 I + HI →C 2 H 6 + I 2 (t 0);

— реакции щелочного плавления солей одноосновных органических кислот

C 2 H 5 -COONa + NaOH→ C 2 H 6 + Na 2 CO 3 (t 0);

— взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

2C 2 H 5 Br + 2Na → CH 3 -CH 2 -CH 2 -CH 3 + 2NaBr;

— электролиз солей одноосновных органических кислот

2C 2 H 5 COONa + 2H 2 O→H 2 + 2NaOH + C 4 H 10 + 2CO 2 ;

К(-): 2H 2 O + 2e → H 2 + 2OH — ;

A(+):2C 2 H 5 COO — -2e → 2C 2 H 5 COO + → 2C 2 H 5 + + 2CO 2 .

Химические свойства алканов

Алканы относятся к наименее реакционноспособным органическим соединениям, что объясняется их строением.

Алканы в обычных условиях не реагируют с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Для алканов наиболее характерны реакции, протекающие по радикальному механизму. Энергетически более выгоден гомолитический разрыв связей C-H и C-C, чем их гетеролитический разрыв.

Реакции радикального замещения наиболее легко протекают по третичному, дплее - по вторичному и в последнюю очередь по первичному атому углерода.

Все химические превращения алканов протекают с расщеплением:

1) cвязей C-H

— галогенирование (S R)

CH 4 + Cl 2 → CH 3 Cl + HCl (hv );

CH 3 -CH 2 -CH 3 + Br 2 → CH 3 -CHBr-CH 3 + HBr (hv ).

— нитрование (S R)

CH 3 -C(CH 3)H-CH 3 + HONO 2 (dilute) → CH 3 -C(NO 2)H-CH 3 + H 2 O (t 0).

— сульфохлорирование (S R)

R-H + SO 2 + Cl 2 → RSO 2 Cl + HCl (hv ).

— дегидрирование

CH 3 -CH 3 → CH 2 =CH 2 + H 2 (kat = Ni, t 0).

— дегидроциклизация

CH 3 (CH 2) 4 CH 3 → C 6 H 6 + 4H 2 (kat = Cr 2 O 3 , t 0).

2) связей C-H и C-C

— изомеризация (внутримолекулярная перегруппировка)

CH 3 -CH 2 -CH 2 -CH 3 →CH 3 -C(CH 3)H-CH 3 (kat=AlCl 3 , t 0).

— окисление

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 → 4CH 3 COOH + 2H 2 O (t 0 , p);

C n H 2n+2 + (1,5n + 0,5)O 2 → nCO 2 + (n+1) H 2 O (t 0).

Применение алканов

Алканы нашли применение в различных отраслях промышленности. Рассмотрим подробнее, на примере некоторых представителей гомологического ряда, а также смесей алканов.

Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений - спиртов, альдегидов, кислот. Пропан применяется как автомобильное топливо. Бутан используется для получения бутадиена, являющегося сырьем для производства синтетического каучука.

Смесь жидких и твердых алканов до С 25 , называемая вазелином применяется в медицине как основа мазей. Смесь твердых алканов С 18 - С 25 (парафин) применяется для пропитки различных материалов (бумага, ткани, древесина) для придания им гидрофобных свойств, т.е. несмачиваемости водой. В медицине используется для физиотерапевтическихпроцедур (парафинолечение).

Примеры решения задач

ПРИМЕР 1

Задание При хлорировании метана получено 1,54 г соединения, плотность паров по воздуху которого равна 5,31. Рассчитайте массу диоксида марганца MnO 2 , которая потребуется для получения хлора, если соотношение объемов метана и хлора, введенных в реакцию равно 1:2.
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

Найдем молярную массу газа, образующегося при хлорировании метана:

M gas = 29 ×D air (gas) = 29 × 5,31 = 154 г/моль.

Это тетрахлорметан - CCl 4 . Запишем уравнение реакции и расставим стехиометрические коэффициенты:

CH 4 + 4Cl 2 = CCl 4 + 4HCl.

Рассчитаем количество вещества тетрахлорметана:

n(CCl 4) = m(CCl 4) / M(CCl 4);

n(CCl 4) = 1,54 / 154 = 0,01 моль.

Согласно уравнению реакции n(CCl 4) : n(CH 4) = 1: 1, значит

n(CH 4) = n(CCl 4) = 0,01 моль.

Тогда, количество вещества хлора должно быть равно n(Cl 2) = 2 × 4 n(CH 4), т.е. n(Cl 2) = 8 × 0,01 = 0,08 моль.

Запишем уравнение реакции получения хлора:

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O.

Число моль диоксида марганца равно 0,08 моль, т.к. n(Cl 2) :n(MnO 2) = 1: 1. Найдем массу диоксида марганца:

m(MnO 2) = n(MnO 2) ×M(MnO 2);

M(MnO 2) = Ar(Mn) + 2×Ar(O) = 55 + 2×16 = 87 г/моль;

m(MnO 2) = 0,08 × 87 = 10,4 г.

Ответ Масса диоксида марганца равна 10,4 г.

ПРИМЕР 2

Задание Установите молекулярную формулу трихлоралкана, массовая доля хлора в котором составляет 72,20%. Составьте структурные формулы всех возможных изомеров и дайте названия веществ по заместительной номенклатуре ИЮПАК.
Ответ Запишем общую формулу трихлоралкеана:

C n H 2 n -1 Cl 3 .

По формуле

ω(Cl) = 3×Ar(Cl) / Mr(C n H 2 n -1 Cl 3) × 100%

рассчитаем молекулярную массу трихлоралкана:

Mr(C n H 2 n -1 Cl 3) = 3 × 35,5 / 72,20 × 100% = 147,5.

Найдем значение n:

12n + 2n - 1 + 35,5×3 = 147,5;

Следовательно, формула трихлоралкана C 3 H 5 Cl 3 .

Составим структурные формулы изомеров: 1,2,3-трихлорпропан (1), 1,1,2-трихлорпропан (2), 1,1,3-трихлорпропан (3), 1,1,1-трихлорпропан (4) и 1,2,2-трихлорпропан (5).

CH 2 Cl-CHCl-CH 2 Cl (1);

CHCl 2 -CHCl-CH 3 (2);

CHCl 2 -CH 2 -CH 2 Cl (3);

CCl 3 -CH 2 -CH 3 (4);

План учебного занятия № 19

Дата Предмет Химия группа

Ф.И.О. преподавателя: Кайырбекова И.А.

Тема : Алканы. Гомологический ряд, изомеры, номенклатура, свойства и получение алканов Цели : Изучить алканы, как один из классов ациклических соединений.

Задачи:

Образовательные:

Продолжить формирование понятия об основных классах углеводородов; начать формировать понятие о карбоциклических соединениях; изучить строение, номенклатуру и изомерию алканов; рассмотреть основные способы получения и применения алканов; изучить химические свойства алканов и генетическую связь с другими классами углеводородов.

Развивающие:

Развивать когнитивную сферу учащихся; общеучебные умения и навыки учащихся; развивать умения анализировать и делать самостоятельные выводы;

Воспитательные:

Прививать культуру умственного труда и сотрудничества; воспитывать дисциплинированность; коллективизм и чувство ответственности; способствовать созданию благоприятного психо-эмоционального климата на уроке;

Тип урока: урок усвоения новых знаний.

ІІ. Ожидаемые результаты:

А) Учащиеся должны знать : строение, свойства алканов

Ә) Учащиеся должны уметь: сравнивать, доказывать

б) учащиеся должны владеть: работы с химическими реактивами соблюдая ТБ

ІІІ. Метод и приемы каждого этапа занятия: словесно- наглядный, объяснительно- илюстративный IV . Средства: интерактивная доска, учебник

Ход урока

1.Организационный момент: Проверить посещаемость учащихся. Ознакомить целями урока.

2. Подготовка к восприятию нового материала: Теоретический диктант:

А) Основные положения теории химического строения А. М. Бутлерова. Привести примеры.

Б) что называется изомерами?

В) Основные механизмы разрыва связей?

3. Объяснения нового материала (усвоение новых знании).

План:

    Понятие об углеводородах. Предельные углеводороды.

    Строение молекулы метана.

    Гомологический ряд метана.

    Строение предельных углеводородов.

    Номенклатура предельных углеводородов.

    Изомерия.

4. Закрепление знаний и умении:

Стр 38 №4-8, 13 упражнение

5. Подведение итогов урока: Фронтальный опрос: по лекции.

6. Домашнее задание: Работа по конспекту . §6 стр 38 11-12 упражнение

1.Углеводороды – органические соединения, состоящие из двух элементов – углерода и водорода. С х Ну. Углеводороды делятся: предельные, непредельные и ароматические. Углеводороды, которые не присоединяют водород и другие элементы, называются предельными углеводородами или алканами. Все валентные связи углерода и водорода полностью насыщены. 2.Молекулярная формула метана СН 4 , его структурная формула: Электронная формула метана В молекуле метана атом углерода находится в возбужденном состоянии внешний слой атома
При этом происходит гибридизация электронных облаков одного электрона и трех р-электронов, то есть происходит гибридизация и образуется четыре одинаковых гибридных электронных облака, направленных к вершинам углов тетраэдра, молекула метана имеет тетраэдрическую форму.

3. В природном газе, кроме метана содержится много других углеводородов, сходных по строению и свойствам с метаном. Их называют предельными углеводородами или парафинами или алканами. Эти углеводороды образуют гомологический ряд предельных углеводородов: СН 4 - метан С 2 Н 6 - этан С 3 Н 8 - пропан С 4 Н 10 – бутан С 5 Н 12 – пентан С 6 Н 14 – гексан С 7 Н 16 - гептан С 8 Н 18 –октан С 9 Н 20 - нонан С 10 Н 22 – декан. Гомологи – это вещества, сходные по строению и химическим свойствам, но отличающиеся друг от друга на группу атомов СН 2 . Общая формула гомологов ряда метана: С п Н 2п+2 где п – число атомов углерода. Атомы углерода, соединяясь друг с другом в цепи в молекуле углеводородов, образуют загзаг, то есть углеродная цепочка имеет зигзагообразное, а причина этому – тетраэдрическое направление валентных связей атомов углерода.

При разрыве связей молекулы углеводородов могут превращаться в свободнее радикалы. При отрыве одного атома водорода образуются одновалентные радикалы: СН 4 - метан- СН 3 метил С 2 Н 6 - этан- С 2 Н 5 - этил С 3 Н 8 - пропан –С 3 Н 7 - пропил С 4 Н 10 – бутан-С 4 Н 9 бутил. 5. Существуют несколько видов номенклатуры: историческая, рациональная, современная или международная. Основной считается международная систематическая номенклатура или Женевская. Основные ее принципы были приняты на международном съезде химиков в Женеве в 1892 году. Основные правила: А) Выделяют в структурной формуле наиболее длинную цепь атомов углерода и номеруют с того конца, где ближе разветвление. Б) название вещества цифрой указывают, при каком атоме углерода находится замещающая группа. В) Когда разветвление начинается при атомах углерода, равноудаленных от главной цепи, нумерацию ведут с того конца, к которому ближе расположен радикал, имеющий более простое строение. 6. для предельных существует только 1 вид структурной изомерии – изомерия цепи или углеродного скелета. Привести пример бутан.

План-конспект «Алканы. Строение. Номенклатура. Физические свойства. Получение. Химические свойства. Применение»

    Класс 10

1.2. Базовый учебник О.С. Габриелян

1.3. Глава 3 «Углеводороды»

1.4. § 11 « Алканы»

1.5. Для урока учащиеся должны знать такие темы как: природные источники углеводородов, типы химических реакций в органической химии, строение атома углерода.

Урок необходим для дальнейшего изучения следующих тем: - алкены, алкины, циклоалкапны, алкадиены, ароматические углеводороды..

1.6. 10 класс базовый уровень

2. Цель – формирование ключевых знаний у учащихся об изомерии, гомологии, строении, свойствах, способах получения, применения алканов.

Задачи:

    Образовательные - рассмотреть гомологический ряд предельных углеводородов, строение, физические и химические свойства, способы их получения при переработке природного газа, возможности их получения из природных источников: природного и попутного нефтяного газов, нефти и каменного угля, области применения алканов.

    Развивающие - развивать умение выдвигать гипотезу и проверять её, умение наблюдать и рассуждать, классифицировать и анализировать, делать выводы, способность к рефлексии и саморефлексии,

    Воспитывающие - воспитание самостоятельности, ответственности, активной жизненной позиции; показать единство материального мира на примере генетической связи углеводородов разных гомологических рядов, получаемых при переработки природного и попутного нефтяного газов, нефти и каменного угля .

    Тип урока – изучение нового материала.

    Оборудование и реактивы: Химия 10 класс: учеб. для общеобразоват. учреждений /О.С.Габриелян, Ф.Н. Маскаев, С.Ю.Пономарев, В. И. Теренин - М.: Дрофа, 2005.-300,с.: ил., компьютер, проектор, презентация, шаростержневая система, портрет Семенова Н.Н., парафиновая свеча, керосиновая лампа, холодная и горячая вода, кристаллизаторы, спички, пинцет.

Ход урока

Приветствие учащихся, организация внимания.

Приветствие учителя.

Введение в тему

    Зажигаем парафиновую свечу и керосиновую лампу.

    Демонстрируем нерастворимость парафина и керосина в холодной воде.

    Демонстрируем нерастворимость парафина и керосина в горячей воде, наблюдаем за каплями расплавленного парафина, стекающими по свече.

Как вы думаете: почему парафин и керосин в горячей воде не растворим?

О чём сегодня пойдёт речь на уроке?

Сообщение темы урока: "Алканы"

Парафины - твёрдые предельные (насыщенных) углеводороды. Парафин не растворим в воде

О веществах, которые входят в состав парафина и керосина, а так же и о других похожих на них соединениях.

Актуализация знаний

Алканы относят к классу углеводородов.

Вспомните, какие вещества называют углеводородами?

Вспомните, чему равна валентность атомов углерода в органических соединениях?

Чему равна валентность атомов водорода?

(Химический знак и валентность атомов углерода и водорода).

Электронное строение атома углерода, переход его в возбужденное состояние.

У глеводороды - соединения, состоящие только из атамов углерода и водорода.

Валентность атома С= IV

Валентность Н= I

С:1S 2 2S 2 2P 2 →→→ C*:1S 2 2S 1 2P 3
основное состояние→*возбужденное состояние
.

Изучение нового материала

На доске написан план изучения алканов:

Строение

Гомологический ряд

Изомерия и номенклатура

Получение

Физические свойства

Химические свойства

Применение

1. Строение

Почему алканы называются «предельными или насыщенными углеводородами»?

АЛКАНЫ - это углеводороды с общей формулой С п Н 2п + 2 в молекулах которых между атомами углерода имеются только одинарные (сигма) связи.

В молекулах алканов имеются только одинарные - связи. Все четыре валентности атома углерода в молекулах алканов полностью, т.е. до предела, насыщены атомами углерода и водорода. Между атомами углерода отсутствуют кратные связи. Отсюда происходят другие названия этих углеводородов - насыщенные или предельные.

(Показ шаростержневую молекулу метана,и других алканов.)

Алканы- s p 3 гибридизация электронных орбиталей. Строение молекулы метана - тетраэдическое, углы между орбиталями равны 109°28".

Гомологический ряд:

Что такое гомологи?

Гомологический ряд метана:

СН 4 -мет ан

С 2 H 6 -эт ан

C 3 H 8- проп ан

C 4 H 10- бут ан

C 5 H 12- пент ан

C 6 H 14 -гекс ан

C 7 H 16- гепт ан

C 8 H 18- окт ан

C 9 H 20 -нон ан

C 10 H 22 -дек ан

Изомерия и номенклатура:

Для алканов характерна только изомерия углеродного скелета . Начиная с бутана у каждого алкана с линейной цепью появляется изомеры с разветвленным углеродным скелетом, возникла необходимость выработать систему их названий. Такая система была разработана Международным союзом теоретической и прикладной химии (ИЮПАК) и получила название международной номенклатуры ИЮПАК.

Алгоритм составления названия алканов.

1.В структурной формуле выбирают самую длинную цепь атомов углерода (главную цепь)

2.Атомы углерода главной цепи нумеруют, начиная с того конца, к которому ближе разветвление (радикал)

3.В начале названия перечисляют радикалы и другие заместители с указанием номеров атомов углерода, с которыми они связаны. Если в молекуле присутствует несколько одинаковых радикалов (два, три, четыре и т. д.) то цифрой указывают место каждого из них в главной цепи и перед их названием ставят соответственно частицы ди-, три-, тетра- и т.д.

4.Основой названия служит наименование предельного углеводорода с тем же числом атомов углерода, что ив главной цепи.

Задание 1. Составления названия алканов.
.

Физические свойства :

СН 4 -C 4 Н 10 - газы

T кипения: -161,6; -0,5 °C

T плавления: -182,5; - 138,3 °C

С 5 Н 12 -C 15 Н 32 - жидкости

T кипения: 36,1-270,5 °C

T плавления: -129,8 - 10 °C

С 16 Н 34 и далее - твёрдые вещества

T кипения: 287,5 °C

T плавления: 20 °C

С увеличением относительных молекулярных масс предельных углеводородов закономерно повышаются их температуры кипения и плавления.

Получение :

Каким способом можно получить алканы?

Класс делится на группы. 1 группа работает с учебником на стр. 70-71,

2 группа – на стр. 71-72. Вопросы: 1 гр.- промышленный способ получения алканов, 2 группа – лабораторный способ получения алканов.

Химические свойства

Для алканов характерны следующие типы химических реакций:

    замещение атомов водорода;

    дегидрирование;

    крекинг;

    окисление

1) Замещение атомов водорода:

А) реакция галогенирования:

CH 4 +Cl 2 → CH 3 Cl + HCl

Доклад учащихся о Семенове Н. Н.

Б) реакция нитрования (Коновалова):

. C 4 H 10 +HONO 2 --->C 4 H 9 NO 2 +H 2 O.

В) реакция сульфирования:

CH 4 + H 2 SO 4 → CH 3 -SO 3 H + H 2 O + Q

3) Реакция с водяным паром:

CH 4 + H 2 O→ CO + 3H 2

4) Реакция дегидрирования:

2СН 4 → НС=СН + 3Н 2 + Q

5) Реакция окисления:

CH 4 + 2O 2 → Н-C + 2H 2 O + Q

6) Горение метана:

CH 4 + 2O 2 → CO 2 + 2H 2 O + Q

Применение :

(заранее подготовленные выступления учащихся.)

Выдвигают свои предположения

Записывают определение в тетради

Записывают и зарисовывают в тетради.

Гомологи - это вещества, сходные по строению и свойствам и отличающиеся на одну или более групп -СH 2

Записывают в тетради

А) 2-метилбутан

Б) З-метилгексан

В) 2,2,4 - триметилпентап

Г) З-метил – 5 - этилтептан

Записывают в тетради

В промышленности:

1) крекинг нефтепродуктов:

C 16 H 34 → C 8 H 18 + C 8 H 16

2) В лаборатории :

а) гидролиз карбидов:

Al 4 C 3 +12 H 2 O = 3 CH 4 + 4 Al ( OH ) 3

б) реакция Вюрца:

C 2 H 5 Cl + 2 Na C 4 H 10 + 2 NaCl

в)декарбоксилирование натриевых солей карбоновых солей:

СН 3 СООNa + 2NaОН → СН 4 + Nа 2 СО 3

Широко используются в качестве топлива, в том числе для

двигателей внутреннего сгорания, а также при производстве сажи

(1 - картриджи; 2 - резина; 3 – типографская краска), при получение органических веществ (4 - растворителей; 5 - хладогентов, используемых в холодильных установках; 6 - метанол; 7 – ацетилен)

Закрепление изученного материала

III. Закрепление: индивидуальная работа у доски и в тетрадях

Составьте все возможные изомеры гептана и назовите их.

Составьте два ближайших гомолога пентана и назовите их.

Определите предельный углеводород, плотность паров по воздуху которого равна 2. (C 4 H 10 )

Рефлексия

«Лестница успеха»

Умею…

Понимаю…

Знаю….

Оценивают свою деятельность

Домашнее задание

§11, упр. 4, 5,7, 8 (стр. 81). Подготовка к самостоятельной работе

Сообщение из истории получения этилена - 1 (ч-к)

Записывают Д/З

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то