Компоненты воды и органических веществ. Определение органических веществ в природных водах

Вредное воздействие органических веществ на водный объект могут оказывать:

1. Индивидуальные органические вещества вследствие их токсичности;

2. Вся совокупность органических веществ, присутствующих в водном объекте. Это последнее влияние может быть двояким:

2.1. Органические вещества не обязательно токсичны. Многие из них, если присутствуют в небольших концентрациях, могут считаться полезными, т.к. служат пищей для микроорганизмов. Однако чаще мы встречаемся с вредным влиянием органических веществ. Аэробные микроорганизмы, в питании которых используются органические вещества, потребляют кислород, растворенный в воде. Если это потребление превышает пополнение свежим кислородом за счет фотосинтеза или поглощения из воздуха на поверхности водоема (реаэрация), наступают губительные для аэробных живых организмов условия. Но если загрязнение органическими веществами и связанное с этим потребление кислорода не переходит умеренных границ, т.е. сохраняются аэробные микроорганизмы, то органические примеси частично окисляются последними (диссимиляция), частично используются для создания биомассы (ассимиляция) и постепенно удаляются из воды.

2.2. Кроме того, органические загрязняющие вещества в своей совокупности могут оказывать и другое разнообразное отрицательное действие. Их присутствие отражается на цвете и прозрачности воды; часто под их влиянием неспецифические запахи и привкусы становятся более заметными; при подготовке питьевой воды путем хлорирования или озонирования увеличивается расход окислителя, что приводит к ухудшению вкуса питьевой воды.

Из сказанного следует, что в первую очередь представляют интерес те органические загрязнения, которые подвергаются быстрому окислению микроорганизмами, далее уделяется внимание всем остальным органическим примесям, поскольку в любом случае их присутствие в воде нежелательно.

При анализе вод прежде всего определяют суммарное содержание органических примесей. Цель такого определения может быть различной. Так анализ родниковых и грунтовых вод с низким содержанием органических загрязнителей должен подтвердить возможность их использования в качестве питьевых; анализ поверхностных вод позволяет выяснить пути поддержания их кислородного бюджета, а также возможность их использования; при исследовании сильно загрязненных бытовых и сточных вод решается вопрос о возможности загрязнения ими отстойника или о методах их очистки.

Издавна известны простые методы определения суммарного содержания органических веществ, не дающие, однако, полных и точных сведений, например, определение потери при прокаливании. Потеря при прокаливании показывает массу органических и неорганических веществ, улетучивающихся или разлагающихся при прокаливании (600 о С) с образованием летучих продуктов.

Цветность природных вод связана с содержанием органических веществ – фульвокислот, придающих воде окраску.

К интегральным методам контроля относится оценка содержания органических загрязнений по суммарному углероду.

Общий органический углерод (С орг.)

Определение органического углерода основано на определении выделившегося при его окислении СО 2 .Окисление органического углерода можно проводить одним из двух способов:

1. Сухое сжигание органических веществ в токе кислорода над катализатором (окись меди) при 900 о С.

2. Мокрое окисление, например, бихроматом калия K 2 Cr 2 O 7 в кислой среде или персульфатом K 2 S 2 O 8 с использованием катализатора.

Оба способа обеспечивают интенсивное окисление и получение сравнимых результатов при анализе вод различных типов.

Процесс мокрого окисления протекает по схеме:

2 Cr 2 O 7 2- + 14 H + + 6 = 2 Cr 3+ + 7 H 2 O

3 C o – 4 +2 H 2 O = CO 2 + 4 H ___________

2 Cr 2 O 7 2- + 16 H + + 3 C o = 4 Cr 3+ + 3 CO 2 + 8 H 2 O

Для ускорения реакции «мокрого» окисления в качестве катализатора используют Ag 2 SO 4 .

Определению мешают неорганический связанный углерод, находящийся в карбонатах, и растворенная СО 2 . Их удаляют при сухом сжигании продуванием смеси при рН 4,6 – 4,8 током кислорода или при мокром окислении выстаиванием пробы с кислым раствором K 2 Cr 2 O 7 без нагревания. При этом окисляются все неогранические соединения, а СО 2 удаляется током воздуха.

Углекислый газ, образовавшийся при разложении органических веществ, определяют методом ИК-спектроскопии или, после каталитического гидрирования на Ni-катализаторе до метана, определяют хроматографически с пламенно-ионизационным детектором.

Определение выделившегося CO 2 можно производить и химически: гравиметрически после поглощения аскаритом (асбест, пропитанный NaOH) или титриметрически после поглощения KOH или Ba(OH) 2:

CO 2 + H 2 O = H 2 CO 3 ; H 2 CO 3 + KOH = KHCO 3 + H 2 O

Образовавшийся HCO 3 - титруют кислотой до рН 4,3.

Ba(OH) 2 + CO 2 = BaCO 3 + H 2 O

BaCO 3 титруют кислотой по фенолфталеину.

Существуют и автоматические анализаторы, непрерывно регистрирующие содержание органического углерода в потоке воды. Принцип работы их в следующем: проба воды выпаривается и сжигается при t = 1000 о С в токе воздуха в присутствии катализатора. Для определения образующейся СО 2 используют разные методы, например, изменение теплопроводности газа, но чаще всего определение заканчивают ИКС методом в упрощенном приборе, т.к. измеряют только пик образующейся СО 2 .

Описанными методами определяется только углерод органических веществ, а водород и др. элементы не определяются. Поэтому получение количественных данных о содержании органических веществ возможно лишь, если известен их элементный состав.

Если качественный состав органической части пробы воды мало изменяется, то легко найти соотношение между средней молярной массой этих веществ и содержанием органического углерода, и таким образом получить коэффициент для пересчета содержания органического углерода на количество органических веществ, выраженное в мг/л. Для сточных вод пищевой промышленности, бытовых сточных вод и других, в которых органические вещества представлены в основном углеводами, белками и продуктами их распада, этот коэффициент можно принять равным 2,4 – 2,5. Для сточных вод, прошедших биохимическую очистку, для сточных вод химических и др. промышленных производств эти коэффициенты могут сильно различаться. Поэтому их определяют индивидуально для каждого типа вод.

Кроме того, по значению общего органического углерода нельзя получить точных сведений о предполагаемом потреблении кислорода на их полное окисление, т.к. для этого нужно еще иметь данные о содержании водорода в органических веществах, который тоже будет окисляться, и о кислороде, который входит в состав молекул этих веществ.

Растворенный кислород

Растворенный кислород находится в природной воде в виде молекул O 2 . На его содержание в воде влияют две группы противоположно направленных процессов: одни увеличивают концентрацию кислорода, другие уменьшают ее. К первой группе процессов, обогащающих воду кислородом, следует отнести:

  • процесс поглощения кислорода из атмосферы; скорость этого процесса повышается с понижением температуры, с повышением давления и понижением минерализации;
  • выделение кислорода водной растительностью в процессе фотосинтеза, который протекает тем сильнее, чем выше температура воды, интенсивность солнечного освещения и больше биогенных веществ (P, N и др.) в воде;
  • поступление в водоемы с дождевыми и снеговыми водами, которые обычно пересыщены кислородом.

К группе процессов, уменьшающих содержание кислорода в воде, относятся реакции потребления его на окисление органических веществ: биологическое (дыхание организмов), биохимическое (дыхание бактерий, расход кислорода на разложение органических веществ) и химическое (окисление Fe 2+ , Mn 2+ , NO 2 - , NH 4 + , CH 4 , H 2 S). Скорость потребления кислорода увеличивается с повышением температуры, количества бактерий и других водных организмов и веществ, подвергающихся химическому и биохимическому окислению. Кроме того, уменьшение содержания кислорода в воде может происходить вследствие выделения его в атмосферу из поверхностных слоев и только в том случае, если вода при данных температуре и давлении окажется пересыщенной кислородом.

В поверхностных водах содержание растворенного кислорода варьирует в широких пределах - от 0 до 14 мг/л - и подвержено сезонным и суточным колебаниям. Последние зависят от интенсивности процессов его продуцирования и потребления, поэтому пробу на кислород отбирают до 12 часов дня, пока содержание кислорода за счет фотосинтеза не достигло больших значений (при осуществлении мониторинга стараются зафиксировать наихудшие условия). Дефицит кислорода чаще наблюдается в водных объектах с высокими концентрациями загрязняющих органических веществ и в эвтрофированных водоемах, содержащих большое количество биогенных и гумусовых веществ.

Концентрация кислорода определяет величину окислительно-восстановительного потенциала и в значительной мере направление и скорость процессов химического и биохимического окисления органических и неорганических соединений. Кислородный режим оказывает глубокое влияние на жизнь водоема. Минимальное содержание растворенного кислорода, обеспечивающее нормальное развитие рыб, составляет около 5 мг/л. Понижение его до 2 мг/л вызывает массовую гибель (замор) рыбы. Неблагоприятно сказывается на состоянии водного населения и пересыщение воды кислородом в результате процессов фотосинтеза при недостаточно интенсивном перемешивании слоев воды.

Определение кислорода в поверхностных водах включено в программы наблюдений с целью оценки условий обитания гидробионтов, в том числе рыб, а также как косвенная характеристика оценки качества поверхностных вод и регулирования процесса самоочищения. Содержание растворенного кислорода существенно для аэробного дыхания и является индикатором биологической активности (т.е. фотосинтеза) в водоеме. Однако, поскольку содержание растворенного кислорода является следствием различных процессов, однозначной связи между содержанием растворенного кислорода и органических веществ в воде нет. Поэтому были разработаны лабораторные методы оценки потребности в кислороде на окисление присутствующих в воде органических веществ, или показатели окисляемости.

Окисляемость

Окисляемость является косвенным показателем содержания органических веществ в воде, т.к. характеризует не концентрацию органических веществ, а свойство воды расходовать растворенный кислород на окисление присутствующих в ней органических веществ.

Итак, в зависимости от степени загрязнения вода содержит большее или меньшее количество восстановителей (в первую очередь, органических веществ), окисляющихся сильными окислителями: перманганатом, бихроматом и т.д. Количество кислорода, эквивалентное количеству окислителя, расходуемого на окисление содержащихся в 1 л воды восстановителей, называется окисляемостью. Она определяется в мг кислорода на 1 литр воды (мг О/л).

Состав органических веществ в природных водах формируется под влиянием многих факторов. К числу важнейших относятся внутриводоемные биохимические процессы продуцирования и трансформации, поступления из других водных объектов, с поверхностными и подземными стоками, с атмосферными осадками, с промышленными и хозяйственно-бытовыми сточными водами. Образующиеся в водоеме и поступающие в него извне органические вещества весьма разнообразны по своей природе и химическим свойствам, в том числе по устойчивости к действию разных окислителей. Соотношение содержащихся в воде легко- и трудноокисляемых веществ в значительной мере влияет на окисляемость воды в условиях того или иного метода ее определения.

Величины окисляемости природных вод изменяются в пределах от долей миллиграммов до десятков миллиграммов в литре в зависимости от общей биологической продуктивности водоемов, степени загрязненности органическими веществами, а также от влияния органических веществ естественного происхождения, поступающих из болот, торфяников и т.п. Поверхностные воды имеют более высокую окисляемость по сравнению с подземными (десятые и сотые доли миллиграмма на 1 л), исключение составляют воды нефтяных месторождений и грунтовые воды, питающиеся за счет болот. Горные реки и озера характеризуются окисляемостью 2-3 мг О/л, реки равнинные - 5-12 мг О/л, реки с болотным питанием - десятки миллиграммов на 1 л.

В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость; в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).

Итак, в зависимости от применяемого окислителя различают перманганатную окисляемость (перманганатный индекс) и бихроматную окисляемость (ХПК – химическое потребление кислорода). Результаты определения окисляемости одной и той же пробы воды, но с применением различных окислителей, обычно различаются, вследствие неодинаковой степени окисления этими окислителями различных веществ в анализируемой воде. Это зависит не только от свойств окислителя, но и от его концентрации, температуры, рН и т.д. Поэтому все методы определения окисляемости условны, а получаемые результаты сравнимы, только если точно соблюдаются все условия проведения определения.

Сопоставим различные методы измерения концентрации органических веществ (рис.1):

Рис.1. Сравнительная характеристика методов определения

Наиболее очевидным показателем концентрации органических веществ в воде (характеризует их содержание на 100%) является теоретическая потребность в кислороде (ТПК, или теоретическая ХПК), которая соответствует потребности в кислороде для окисления органических веществ, определенной на основе стехиометрического уравнения реакции окисления.

Теоретическая потребность в кислороде – это количество кислорода (или окислителя в расчете на кислород), в мг/л, необходимое для полного окисления содержащихся в пробе органических веществ, при котором углерод, водород, сера, фосфор и другие элементы, кроме азота, если они присутствуют в органическом веществе, окисляются до своих высших оксидов:

а азот превращается в аммиак или аммонийную соль:

N ® NH 3 (NH 4 +).

При этом кислород, входивший в состав окисляемых органических веществ, участвует в процессе окисления, а водород этих соединений отдает по три атома на каждый атом азота при образовании аммиака (NH 3) или по два атома на каждый атом кислорода при образовании воды (H 2 O).

Примеры расчета удельной ТПК:

1. Щавелевая кислота

H 2 C 2 O 4 + O = 2 CO 2 + H 2 O

1 мг - ТПК уд.

ТПК уд. = мг О/мг щавелевой кислоты.

2. Глюкоза

С 6 Н 12 О 6 + 12 О = 6 СО 2 + 6 Н 2 О

М=180г - 12×16г

1 мг - ТПК уд.

ТПК уд. = мг О/мг глюкозы

3. Уксусная кислота

С 2 Н 4 О 2 + 4 О = CO 2 + H 2 O

М=60г - 4×16г

1 мг - ТПК уд.

ТПК уд. = мг О/мг уксусной кислоты

С 3 H 7 NO 2 + 6 O = 3 CO 2 + 2 H 2 O + NH 3

M= 89г - 6×16г

1 мг - ТПК уд.

ТПК уд. = мг О/мг анилина

Для некоторых индивидуальных компонентов бытовых и аналогичных им по составу производственных сточных вод удельные ТПК равны:

Сахароза 1,12

Пептон 1,20

Альбумин 1,32

Казеин 1,39

Если органическое вещество бытовых сточных вод, состоящее преимущественно из остатков белковых молекул и углеводов, представить как (СН 2 О) n , то теоретически окисляемость должна быть равна:

(СН 2 О) n + 2n O = n CO 2 + n H 2 O

1 мг - ТПК уд.

ТПК уд. = мг О/мг органического в-ва бытовых сточных вод.

Лабораторная оценка теоретической потребности в кислороде осуществляется путем окисления бихроматом калия в сильнокислой среде в присутствии катализатора Ag 2 SO 4 . Количество кислорода, эквивалентное количеству пошедшего на окисление органических веществ бихромата называется бихроматной окисляемостью или ХПК (химическое потребление кислорода).

Процесс протекает по схеме:

2 Cr 2 O 7 2- + 16 H + + 3 C o = 4 Cr 3+ + 3 CO 2 + 8 H 2 O,

полностью идентичной схеме протекания мокрого окисления при определении общего органического углерода С орг. . Окисление ускоряется и охватывает даже такие трудно окисляемые вещества, как уксусная кислота и аминокислоты, если реакцию проводить в присутствии катализатора Ag 2 SO 4 .

Схема катализа:

В реакцию вводят строго определенное количество бихромата калия. После окисления избыток Cr 2 O 7 2- оттитровывают солью Мора Fe 2 (NH 4) 2 (SO 4) в присутствии индикатора (ферроина или фенилантраниловой кислоты):

Cr 2 O 7 2- + 6 Fe 2+ + 14 H + = 6 Fe 3+ + 2 Cr 3+ + 7H 2 O

Результат выражают в мг О/л с учетом того, что 1 молекула Cr 2 O 7 2- эквивалентна трем атомам кислорода.

Несмотря на то, что бихромат является сильным окислителем и окисляет практически все органические вещества, результат определения ХПК составляет 95-98% от теоретического ХПК (или ТПК). Потеря 2-5% объясняется, главным образом, образованием летучих, устойчивых к окислению продуктов распада (СО, СН 4). В обычных условиях проведения процесса не окисляются только пиридин и некоторые другие азотсодержащие гетероциклы (пиррол, пирролидин, никотиновая кислота), а также малорастворимые в воде углеводороды, такие как бензол и его гомологи, парафин и нафталин. Если анализируемая проба содержит неорганические восстановители, то количество их, определенное отдельно, должно быть вычтено (в пересчете на кислород) из результата определения ХПК.

В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и промышленных сточных вод (в том числе, и степени их очистки), а также поверхностного стока. Этот метод является основным при анализе сточных и загрязненных вод, окисляемость которых > 100 мг О/л. Его можно использовать и для анализа вод с окисляемостью 5 – 100 мг О/л, но воспроизводимость будет хуже (±10%). Для более чистых вод метод не применим, т.к. дает неточные результаты: малое количество окислителя, затраченного в реакции, определяется как разность двух больших величин – количества K 2 Cr 2 O 7 до окисления и оставшегося количества K 2 Cr 2 O 7 после окисления.

Однако значение ХПК чистых вод, используемых в качестве питьевых, представляет особый интерес. Поскольку органические загрязнители реагируют с K 2 Cr 2 O 7 практически полностью, следовательно ХПК является более достоверной мерой окисляемости (чем ПО, где окисление происходит лишь на 40 – 60%), по которой можно судить о требуемом количестве озона или хлора, используемого при водоподготовке.

В этой связи особый интерес представляют автоматические приборы для измерения ХПК. В одном из таких приборов пробу воды выпаривают в токе азота, затем сжигают в точно отмеренном количестве кислорода под действием катализатора при высокой температуре и потенциометрическим методом определяют остаточное количество кислорода.

Нормативы на ХПК для воды водоемов хозяйственно-питьевого водопользования – 15 мг О/л, культурно-бытового – 30 мг О/л.

Значение ХПК хотя и служит мерой общего содержания в воде органических загрязнений, все же (как и С орг.) оно недостаточно для количественного расчета загрязнений, если неизвестен элементный состав этих органических примесей. Фактор пересчета (1 мг загрязнителя = 1,2 мг О/л ХПК) изменяется в зависимости от содержания O и N в органических веществах.

В настоящее время уделяется повышенное внимание определению отношения ХПК/С орг. в поверхностных и сточных водах. Естественно, что при анализе сравнительно чистых вод эту величину находят со значительными ошибками, как вследствие разброса в результатах ХПК, так и потому, что С орг. определяется как малая разность двух больших величин: содержания общего и неорганического углерода.

Это отношение для всех углеводов (глюкозы, сахарозы, полисахаридов) имеет одно и то же значение, равное 2,67. Это же значение получится для уксусной и молочной кислот. Для белков, приняв их средний состав: С – 53%, Н – 7%, О – 23%, N – 17%, S – 0,25%, получим величину 2,8. Если для гуминовых кислот среднее соотношение С:Н:О:N = 16:17:8:1, то для них ХПК/С орг. = 2,6.

Таким образом, для основных органических веществ природного происхождения отношение ХПК/С орг. = 2,6 – 2,8. Это же можно сказать и об органических веществах в сточных водах пищевой промышленности и бытовых сточных водах, не загрязненных промышленными стоками.

Проверим сказанное расчетным путем на примере сахарозы:

С 12 Н 22 О 11 + 24О = 12 СО 2 + 11 Н 2 О

М=342 г - 24×16 г

1 мг - ТПК уд.

ТПК уд. = мг О/мг сахарозы;

С 12 Н 22 О 11 - 12 С

М=342 г - 12×12 г

1 мг - С орг,уд.

С орг,уд. = мг С/мг сахарозы

Возьмем отношение: ТПК уд. /С орг.,уд. =1,12/0,42 = 2,67.

Отношение ХПК/С орг. удобнее, чем ХПК и С орг. отдельно. Величина ХПК отражает не только содержание органического углерода в пробе, но и содержание кислорода, водорода в молекулах окисляемых органических веществ. Водород требует соответствующего количества кислорода на превращение его в воду; чем больше водорода в молекуле, тем выше ХПК. С другой стороны, кислород, входящий в состав молекулы окисляющегося вещества, участвует в образовании молекул СО 2 и Н 2 О и, следовательно, чем его больше, тем меньше ХПК.

ХПК и С орг. в отдельности не могут характеризовать ни природу органического загрязнителя, ни его количество, если не известен элементный состав. При вычислении отношения ХПК/С орг. молярная масса органического вещества сокращается:

ХПК/С орг. (для сахарозы) =

и отношение характеризует количество кислорода (в мг), необходимое на окисление 1 мг углерода, имеющегося в молекуле загрязнителя.

Поскольку в большинстве органических веществ природного происхождения соотношение Н:О = 2:1, т.е. как в молекуле воды, или, иными словами, формальная степень окисления углерода равна 0, то кислород окислителя расходуется лишь на окисление углерода до СО 2 . Поэтому для природных органических веществ отношение ХПК/С орг. характеризуется столь стабильной величиной, равной 2,67:

С о + 2О = СО 2

М=12 г - 2×16 х = ХПК/С орг. =

Для веществ с более высоким содержанием углерода и водорода, т.е. когда формальная степень окисления углерода < 0, на окисление каждого атома углерода до СО 2 требуется больше кислорода, а следовательно ХПК/С орг. > 2,67.

Следовательно, если ХПК/С орг. > 3, то это сигнал о том, что вода загрязнена веществами с относительно длинными углеводородными цепями в молекулах (предположительно продуктами химических производств или нефтепродуктами). Воду тогда более подробно анализируют. Можно определить в ней содержание нефтепродуктов, вычесть отвечающие ему величины ХПК и С орг. соответственно из числителя и знаменателя дроби ХПК/С орг. и получить новое значение этого показателя, по которому можно судить о присутствии в воде других загрязняющих ее веществ с длинной углеводородной цепью в молекуле.

Примеры таких веществ:

Если формальная степень окисления углерода в органической молекуле > 0, то ХПК/С орг. < 2,67. Самое маленькое значение этого отношения у щавелевой кислоты: ХПК/С орг. = 0,67.

Таким образом, этот показатель является характеристикой загрязненности вод промышленными сточными водами. Отражая соотношения между количеством С, Н, N и О в молекулах органических соединений, он дает полезную информацию о природе этих соединений.

III. III. Внереализационные доходы и расходы (показатели 12, 13, 14,15, 16)
  • III. Порядок хранения, содержания и ремонта Боевого знамени

  • Органические вещества в природных водах - продукты растений и животных, населяющих водную среду, представленные соединениями углерода с другими элементами. В воде водоемов содержится большое количество самых разнообразных органических соединений.

    Углеводороды (нефтепродукты).

    Нефтепродукты относятся к числу наиболее распространенных и опасных веществ, загрязняющих поверхностные воды. Большие количества нефтепродуктов поступают в поверхностные воды при перевозке нефти водным путем, со сточными водами предприятий нефтедобывающей, нефтеперерабатывающей, химической, металлургической и других отраслей промышленности, с хозяйственно-бытовыми водами. Некоторые количества углеводородов поступают в воду в результате прижизненных выделений растительными и животными организмами, а также в результате их посмертного разложения.

    Метан принадлежит к газам биохимического происхождения. Основным источником его образования служат дисперсные органические вещества в породах. В чистом виде он иногда присутствует в болотах, образуясь при гниении болотной растительности.

    Бензол представляет собой бесцветную жидкость с характерным запахом.В поверхностные воды бензол поступает с предприятий и производств основного органического синтеза, нефтехимической, химико-фармацевтической промышленности, производства пластмасс, взрывчатых веществ, ионообменных смол, лаков и красок, искусственных кож, а также со сточными водами мебельных фабрик.

    Фенолы представляют собой производные бензола с одной или несколькими гидроксильными группами. Фенолы в естественных условиях образуются в процессах метаболизма водных организмов, при биохимическом распаде и трансформации органических веществ, протекающих как в водной толще, так и в донных отложениях.Фенолы являются одним из наиболее распространенных загрязнений, поступающих в поверхностные воды со стоками предприятий нефтеперерабатывающей, сланцеперерабатывающей, лесохимической, коксохимической, анилинокрасочной промышленности и др.

    Гидрохинон

    В поверхностные воды гидрохинон попадает со сточными водами производства пластмасс, кинофотоматериалов, красителей, предприятий нефтеперерабатывающей промышленности.

    Метанол попадает в водоемы со сточными водами производств получения и применения метанола.

    Этиленгликоль

    Этиленгликоль попадает в поверхностные воды со сточными водами производств, где он получается или применяется (текстильная, фармацевтическая, парфюмерная, табачная, целлюлозно-бумажная промышленности).

    Органические кислоты

    Органические кислоты относятся к числу наиболее распространенных компонентов природных вод различного происхождения и нередко составляют значительную часть всего органического вещества в этих водах. Состав органических кислот и их концентрация определяются с одной стороны внутриводоемными процессами, связанными с жизнедеятельностью водорослей, бактерий и животных организмов, с другой -- поступлением этих веществ извне.

    Органические кислоты образуются за счет следующих внутриводоемных процессов:

    • · прижизненных выделений в результате нормальных физиологических процессов здоровых клеток;
    • · посмертных выделений, связанных с отмиранием и распадом клеток;
    • · выделений сообществами, связанных с биохимическим взаимодействием различных организмов, например водорослей и бактерий;
    • · ферментативного разложения высокомолекулярных органических веществ типа углеводородов, протеинов и липидов.

    Поступление органических кислот в водные объекты извне возможно с поверхностным стоком, особенно в период половодья и паводков, с атмосферными осадками, промышленными и хозяйственно-бытовыми сточными водами и с водами, сбрасываемыми с орошаемых полей.

    Муравьиная кислота

    В природных водах в небольших количествах муравьиная кислота образуется в процессах жизнедеятельности и посмертного разложения водных организмов и биохимической трансформации содержащихся в воде органических веществ. Ее повышенная концентрация связана с поступлением в водные объекты сточных вод предприятий, производящих формальдегид и пластические массы на его основе.

    Пропионовая кислота

    Пропионовая кислота может поступать в природные воды со стоками химической промышленности.

    Молочная кислота

    В природных водах молочная кислота в микрограммовых концентрациях присутствует в результате образования в процессах жизнедеятельности и посмертного разложения водных организмов.

    Бензойная кислота

    В незагрязненных природных водах, бензойная кислота в небольших количествах образуется в процессах жизнедеятельности водных организмов и их посмертного разложения. Основным источником поступления больших количеств бензойной кислоты в водоемы являются стоки промышленных предприятий, так как бензойная кислота и различные ее производные широко используются при консервировании пищевых продуктов, в парфюмерной промышленности, для синтеза красителей и т.д.

    Гумусовые кислоты

    Гуминовые и фульвокислоты, объединяемые под названием гумусовые кислоты, нередко составляют значительную долю органического вещества природных вод и представляют собой сложные смеси биохимически устойчивых высокомолекулярных соединений. Главным источником поступления гумусовых кислот в природные воды являются почвы и торфяники, из которых они вымываются дождевыми и болотными водами. Значительная часть гумусовых кислот вносится в водоемы вместе с пылью и образуется непосредственно в водоеме в процессе трансформации "живого органического вещества".

    Азот органический

    Под "органическим азотом" понимают азот, входящий в состав органических веществ, таких как протеины и протеиды, полипептиды (высокомолекулярные соединения), аминокислоты, амины, амиды, мочевина (низкомолекулярные соединения). Значительная часть азотсодержащих органических соединений поступает в природные воды в процессе отмирания организмов, главным образом фитопланктона, и распада их клеток.

    Мочевина

    Мочевина (карбамид), будучи одним из важных продуктов жизнедеятельности водных организмов, присутствует в природных водах в заметных концентрациях: до 10-50% суммы азотсодержащих органических соединений в пересчете на азот. Значительные количества мочевины поступают в водные объекты с хозяйственно-бытовыми сточными водами, с коллекторными водами, а также с поверхностным стоком в районах использования ее в качестве азотного удобрения. Карбамид может накапливаться в природных водах в результате естественных биохимических процессов как продукт обмена веществ водных организмов, продуцироваться растениями, грибами, бактериями как продукт связывания аммиака, образующегося в процессе диссимиляции белков.

    Анилин относится к ароматическим аминам и представляет собой бесцветную жидкость с характерным запахом. В поверхностные воды анилин может поступать со сточными водами химических (получение красителей и пестицидов) и фармацевтических предприятий.

    Диметилсульфид

    Диметилсульфид выделяется водорослями в ходе нормальных физиологических процессов, имеющих существенное значение в круговороте серы. В поверхностные воды диметилсульфид может поступать также со стоками предприятий целлюлозной промышленности.

    Карбонильные соединения

    В природных водах карбонильные соединения могут появляться в результате прижизненных выделений водорослей, биохимического и фотохимического окисления спиртов и органических кислот, распада органических веществ типа лигнина, обмена веществ бактериобентоса. Постоянное присутствие карбонильных соединений среди кислородных соединений нефти и в воде, контактирующей с залежами углеводородов, позволяет рассматривать последние в качестве одного из источников обогащения природных вод этими веществами. Источником карбонильных соединений являются также наземные растения, в которых образуются альдегиды и кетоны алифатического ряда и фурановые производные. Значительная часть альдегидов и кетонов поступает в природные воды в результате деятельности человека.

    В природные воды ацетон поступает со сточными водами фармацевтических, лесохимических производств, производства лаков и красок, пластмасс, кинопленки, ацетилена, ацетальдегида, уксусной кислоты, оргстекла, фенола, ацетона.

    Формальдегид

    Формальдегид поступает в водную среду с промышленными и коммунальными сточными водами. Он содержится в сточных водах производств основного органического синтеза, пластмасс, лаков, красок, лекарственных препаратов, предприятий кожевенной, текстильной и целлюлозно-бумажной промышленности.

    Углеводы

    Под углеводами понимают группу органических соединений, которая объединяет моносахариды, их производные и продукты конденсации -- олигосахариды и полисахариды. В поверхностные воды углеводы поступают главным образом вследствие процессов прижизненного выделения водными организмами и их посмертного разложения. Значительные количества растворенных углеводов попадают в водные объекты с поверхностным стоком в результате вымывания их из почв, торфяников, горных пород, с атмосферными осадками, со сточными водами дрожжевых, пивоваренных, сахарных, целлюлозно-бумажных и других заводов.

    Окисляемость воды - величина, характеризующая содержание в воде органических веществ, окисляемых одним из самых сильных химических окислителей при определенных условиях.

    Окисляемость воды выражается в миллиграммах атомарного кислорода, пошедшего на окисление веществ, содержащихся в литре воды.

    Количество органических веществ в воде принято определять косвенным методом - по потребному для окисления кислороду. Отсюда, чем больше в воде органических веществ, тем больше кислорода идет на окисление, тем выше окисляемость воды. Следует отметить, что при анализе не полностью окисляются органические вещества и в то же время могут частично окислятся некоторые минеральные соединения (нитриты, сульфаты и закись железа). Поэтому окисляемость воды дает только представление о количестве находящихся в воде легкоокисляющихся веществ, не указывая их природы и фактического содержания.

    Подземные воды, используемые для питьевых целей, всегда содержат то или иное количество органических веществ водно­го происхождения. Спектр их весьма широк. В нем представле­ны ароматические гумусовые вещества, соединения с карбок­сильной, карбонильной и гидроксильной группой, гетероцик­лические соединения, углеводороды, липоиды, битумы. Однако общее количество природных органических веществ в них, как правило, невелико и составляет единицы и первые десятки мг/л (Крайнов и др., 1997).

    С медико-экологических позиций особое внимание привле­кают две группы веществ - гумусовые вещества и продукты минерализации азотсодержащих органических соединений - нитриты и нитраты.

    Гумусовые вещества не обладают каким-либо вредоносным действием. В избыточных концентрациях они лишь способны придавать питьевой воде нежелательную окраску. В тоже время, при хлорировании воды, содержащей естественно присутству­ющие гумусовые вещества и бромиды, образуются тригаломе - таны. Наибольшее значение из этой группы соединений имеют бромоформ, дибромхлорметан, бромдихлорметан и хлороформ, обладающие выраженным канцерогенным действием. Обнару­жение эффекта образования токсичных вторичных продуктов хлорирования изменило и гигиеническую рценку природных органических примесей воды водооисточников и ранее быто­вавшее мнение о безвредности дезенфекции воды хлором.

    С использованием сильных окислителей (хлора, озона) для обеззараживания воды, содержащей природные органические соединения, связывают появление и другого токсического ве­щества - формальдегида.

    Нитраты и нитриты, как это уже отмечалось выше, способ­ны вызывать весьма опасные заболевания. С повышенными кон­центрациями нитратов в подземной воде связывают заболева­ния крови (появление извращенной формы гемоглобина - мет - гемоглобина). Нитриты и нитраты, при попадании в организм человека способны превращаться в N-нитрозоамины - канце­рогенные соединения.

    Перечень органических веществ антропогенного происхож­дения, способных загрязнять водоисточники, в том числе и под­земные, весьма велик - это сотни соединений. К ним принадле­жат хлорированное алканы, этидены, бензолы, ароматические углеводороды, пестициды, побочные продукты обеззараживания воды, а также целый ряд других органических компонентов - продуктов производств органического синтеза, нефтехимиче­ской промышленности, а также пластификаторов, растворите­лей, моющих, красящих средств и др.

    Многие из этих веществ способны вызывать один или не­сколько токсичных эффектов: канцерогенный, генотоксический, мутагенный, нефротоксический (влияние на почки), гепатокси - ческий (влияние на печень). Следует отметить, что в основе пред­ставлений о вредном влиянии повышенных концентраций не­органических и органических веществ в питьевой воде лежат данные развернутых лабораторных исследований на животных, направленных, прежде всего, на разработку стандартов качества питьевой воды. Однако, в последние годы все большее значение приобретают исследования, устанавливающие связи заболева­ний человека с тем или иным природным или антропогенным компонентом питьевой воды.

    Требования к качеству питьевой воды сейчас устанавливаются как на международном, так и на национальном уровнях. Боль­шинство стран мирового сообщества при создании нацио­нальных стандартов принимает в качестве основополагающих документов "Руководство по контролю качества питьевой воды" Всемирной организации здравоохранения, директивы по питье­вой воде Европейского Сообщества 80/778/ЕС и национальные стандарты США.

    При разработке стандартов питьевой воды общепринят экс­периментально-токсикологический метод к установлению пре­дельно допустимых концентраций, в наиболее четкой форме сформулированный российской гигиенической наукой (Руко­водство..., 1975; Красовский и др., 1990). Применяемая ме­тодология предусматривает изучение влияний различных концентраций вещества на самоочищающую способность воды (установление ПДК по общесанитарному нормируемому при­знаку вредности), на ее вкус, цвет, запах (установление ПДК по органическому признаку вредности), и на характер токси­ческих проявлений при использовании для питья (установ­ление ПДК по токсикологическому признаку вредности). В ка­честве стандарта выбирается наименьшая из трех установлен­ных ПДК.

    Экспериментально-токсикологический подход существенно дополняет развивающиеся сейчас исследования в области эко­логической эпидемиологии, опирающиеся на эколого-демогра - фические данные и материалы специальных эпидемиологиче­ских исследований. Работы этого направления свидетельствуют о смешении представлений о безусловности вредоносного дей­ствия малых концентраций некоторых нормируемых вредных веществ. Современная позиция Всемирной организации здра­воохранения в этом отношении стала значительно более осто­рожна (Guidelines, 1993). С этим, очевидно, связаны и двухуров­невые нормативы Агентства по охране окружающей среды США, предусматривающие определение отдельно - максимально до­пустимого целевого уровня и максимально допустимой кон­центрации. При этом, однако, оговаривается допустимая сте­пень риска в условиях применения доступных технологий водоподготовки и средств контроля качества воды (National Primary..., 1991).

    Значительное нарастание числа загрязняющих воду веществ определило необходимость создания ускоренных эксперимен­тальных меїодов установления их допустимого содержания. В предложенных для этой цели приемах используются либо из­вестные сведения экспериментальной токсикологии, либо рет­роспективный корреляционный анализ заболеваемости населе­ния с потреблением воды определенного состава (эколого-де - мографический метод).

    Целенаправленные санитарно-токсикологические и эколого - эпидемиологические исследования, обосновывающие стандар­ты, достаточно информативны при разработке профилактиче­ских мероприятий, направленных на предупреждение вредных влияний водного фактора.

    Сравнительный анализ международных стандартов, совер­шенствующихся ВОЗ начиная с 1958 г., обнаруживает тенден­цию развития системы контролируемых показателей за счет ус­тойчивого нарастания их числа. Расширение нормативной базы идет, в основном, за счет введения в стандарты многих органи­ческих соединений, связанных с усилением антропогенного пресса на поверхностные и подземные водные ресурсы (пести­циды, продукты производств органического синтеза, нефтехи­мической промышленности). В международных нормативах последнего периода четко обозначено крайне негативное от­ношение к вторичным продуктам взаимодействия сильных окислителей (используемых для обеззараживания воды) с орга­ническими соединениями природного и антропогенного про­исхождения.

    чивы, поскольку подвергаются гидролизу с последующим осаждением гидроксидов. Формы миграции железа в почвенно-грунтовых водах меняются посезонно: в период весеннего половодья при большом количестве взвешенного материала преобладают взвешенные формы, в межень (сезонное понижение уровня воды в реках) большую роль в переносе железа играет органическое вещество. Наиболее важные источники поступления химических, в том числе биогенных элементов в природные воды разделяют на две большие группы: внешние и внутренние. Внешние источники обеспечивают поступление веществ в водоемы с речным стоком, атмосферными осадками, промышленными, хозяйствен- но-бытовыми и сельскохозяйственными сточными водами. Внутренние источники накапливают химические элементы за счет процессов поступления из залитого ложа водохранилищ, минерализации древесной, луговой и высшей водной растительности и отмершего планктона, а также донных отложений.

    4. Органические вещества в природных водах

    Органические вещества - одна из самых сложных по качественному составу групп соединений, содержащихся в природных водах. Она включает органические кислоты, фенолы, гумусовые вещества, азотсодержащие соединения, углеводы и т. д., накапливающиеся за счет внутриводоемных процессов (автохтонные).

    Природные воды содержат органические вещества в сравнительно невысоких концентрациях. Средняя концентрация органического углерода в речных и озерных водах редко превышает 20 мг/л. В морских и океанических водах содержание С еще более низкое. Содержание белковоподобных веществ, свободных аминокислот и аминов колеблется в пределах 20–340, 2–25 и 6–200 мкг азота на 1 л соответственно.

    К числу аллохтонных (поступающих извне) относятся органические кислоты, эфиры, углеводы, гумусовые вещества. Концентрация органических кислот и сложных эфиров редко превышает пределы 40–200 и 50–100 мкг/л. Содержание углеводов несколько выше и нередко достигает единиц миллиграммов в 1 л. Значительную часть органического вещества природных вод составляют гумусовые вещества: гуминовые кислоты и фульвокислоты. Особенно богаты гуминовыми веществами воды северных районов страны, где концентрация их часто составляет единицы и десятки миллиграммов на 1 л. В морских и океанических водах среднее содержание гумусовых веществ ниже и редко превышает 3 мг/л.

    По происхождению органические вещества природных вод делят на две большие группы:

    1) продукты биохимического распада остатков организмов, населяющих водоем (главным образом планктон), - это вещества автохтонного происхождения;

    2) органические вещества, поступающие в водоемы извне с речным стоком, атмосферными осадками, промышленными, хозяйственно-бытовыми и сельскохозяйственными сточными водами, - аллохтонные вещества. Особое место в этой группе занимают гумусовые вещества почв, торфяников, лесных подстилок.

    Органические вещества природных вод могут находиться в состоянии истинных растворов, коллоидов и взвешенных грубых частиц (суспензий). Коллоидная форма миграции наиболее характерна для природных вод зоны гипергенеза, богатых высокомолекулярными гумусовыми веществами. Однако часть окрашенных органических соединений - фульвокислоты и некоторые формы гуминовых кислот - могут быть в состоянии истинных растворов. Для природных вод характерна миграция органического вещества в виде взвесей, например детрита, состоящего из мельчайших органических и неорганических остатков, образующихся при распаде погибших организмов. Особое место среди этих явлений занимает комплексообразование, что имеет положительное биологическое значение, инактивируя избыточные количества ионов тяжелых металлов; благоприятствует растворению труднодоступных, но биологически важных элементов.

    В природных водах химические элементы находятся в виде ряда неорганических и разнообразных органических соединений. В растворенном состоя-

    нии в химическом составе пресной воды преобладают четыре металла, присутствующие в виде простых катионов (Са2+ , Na+ , К+ , Мg2+ ).

    Количественное и качественное содержание главных анионов и катионов определяет принадлежность к тому или иному классу воды. Однако минеральный состав воды не является единственным фактором, определяющим качество воды.

    Органические вещества - одна из самых сложных по качественному составу групп соединений, содержащихся в природных водах, она включает органические кислоты, фенолы, гумусовые вещества, азотсодержащие соединения, углеводы. Органические вещества природных вод могут находиться в состоянии истинных растворов, коллоидов и взвешенных грубых частиц (суспензий).

    При формировании химического состава природных вод выделяют прямые и косвенные, а также главные и второстепенные факторы. Главные факторы определяют содержание главных анионов и катионов (т. е. класс и тип воды по классификации О. А. Алекина). Второстепенные факторы вызывают появление некоторых особенностей данной воды (цвета, запаха и др.), но не влияют на

    ее класс и тип.

    Контрольные вопросы

    1. Какие ионы относятся к главным независимо от происхождения вод?

    2. Какие органические вещества чаще всего встречаются в реках и озерах?

    3. В чем особенность классификации вод по О. А. Алекину?

    4. Какие воды относятся к классу ультрапресных?

    5. Какие воды относятся к категории рассолов?

    ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

    ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

    КАФЕДРА ОРГАНИЧЕСКОЙ ХИМИИ

    Введение…………………………………………………………...3

    Литературный обзор. Классификация и свойства

    сточных вод…………………………………………………..……5

    Физическое состояние сточных вод……………………….....….8

    Состав сточных вод……………………………………………...10 Бактериальные загрязнения сточных вод……………………....11

    Водоём как приемник сточных вод……………………………..11

    Методы очистки ПСВ……………………………………………12

    Механическая очистка ПСВ……………………………………..13

    Физико-химическая очистка ПСВ………………………………14

    Химический анализ ПСВ………………………………………..16

    Определение органических веществ

    методом хроматографии……………………………….………..18

    Определение органических соединений

    методом масс-спектрометрии………………………….……….19

    Химические тест-метды анализа……………………………….20

    Практическая часть.

    Метод газовой хроматографии……………………………..24

    Метод масс-спектроскопии……………………………………..26

    Выводы …………...……………………………………………...27

    Список литературы……………………………………..28

    Введение

    Вода – ценнейший природный ресурс. Она играет исключительную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Общеизвестна необходимость ее для бытовых потребностей человека, всех растений и животных. Для многих живых существ она служит средой обитания. Рост городов, бурное развитие промышленности, интенсификация сельского хозяйства, значительное расширение площадей орошаемых земель, улучшение культурно-бытовых условий и ряд других факторов все больше усложняет проблемы обеспечения водой.

    Потребности в воде огромны и ежегодно возрастают. Ежегодный расход воды на земном шаре по всем видам водоснабжения составляет 3300-3500 км3. При это 70% всего водопотребления используется в сельском хозяйстве. Много воды потребляют химическая и целлюлозно-бумажная промышленность, черная и цветная металлургия. Развитие энергетики также приводит к резкому увеличению потребности в воде. Значительное количество воды расходуется для потребностей отрасли животноводства, а также на бытовые потребности населения. Большая часть воды после ее использования для хозяйственно-бытовых нужд возвращается в реки в виде сточных вод.

    Дефицит пресной воды уже сейчас становится мировой проблемой. Все более возрастающие потребности промышленности и сельского хозяйства в воде заставляют все страны, ученых мира искать разнообразные средства для решения этой проблемы.

    На современном этапе определяются такие направления рационального использования водных ресурсов: более полное использование и расширенное воспроизводство ресурсов пресных вод; разработка новых технологических процессов, позволяющих предотвратить загрязнение водоемов и свести к минимуму потребление свежей воды.

    Бурное развитие промышленности вызывает необходимость в пре­дотвращении отрицательного воздействия производственных сточных вод (ПСВ) на водоёмы. В связи с чрезвычайным разнообразием состава, свойств и расходов сточных вод промышленных предприятий необходимо применение специфи­ческих методов, а также сооружений по локальной, предварительной и пол­ной очистке этих вод. Одним из основных направлений научно-техниче­ского прогресса является создание малоотходных и безотходных технологи­ческих процессов.

    Цель работы является знакомство с литературными данными по мето­дам очистки сточных вод.

    Литературный обзор
    1.1.Классификация и свойства сточных вод
    В канализационную сеть поступают загрязненные сточные воды мине­рального, органического и бактериального происхождения.

    К минеральным загрязнениям относятся: песок; глинистые частицы; частицы руды и шлака; растворенные в воде соли, кислоты, щёлочи и другие вещества.

    Органические загрязнения бывают растительного и животного проис­хождения. К растительным относятся остатки растений, плодов, овощей и злаков, бумага, растительные масла, гуминовые вещества и другое. Основной химический элемент, входящий в состав этих загрязнений – углерод. К за­грязнениям животного происхождения относятся физиологические выделе­ния животных и людей, остатки мускульных и жировых тканей животных, органические кислоты и другое. Основной химический элемент этих загряз­нений – азот. В бытовых водах содержится примерно 60% загрязнений орга­нического происхождения и 40% минерального. В ПСВ эти соотношения мо­гут быть иными и изменяться в зависимости от рода обрабатываемого сырья и технологического процесса производства.

    К бактериальным загрязнениям относятся живые микроорганизмы – дрожжевые и плесневые грибы и различные бактерии. В бытовых сточных водах содержатся такие болезнетворные бактерии (патогенные) – возбуди­тели заболеваний брюшного тифа, паратифа, дизентерии, сибирской язвы и др., а также яйца гельминтов (глистов), попадающих в сточные воды с выде­лениями людей и животных. Возбудители заболеваний содержатся и в неко­торых ПСВ. Например, в сточных водах коже­венных заводов, фабрик пер­вичной обработки шерсти и др.

    В зависимости от происхождения, состава и качественных характеристик загрязнений (примесей) сточные воды подразделяются на 3 основных категории: бытовые (хозяйственно-фекальные), производственные (промышленные) и атмосферные.
    К бытовым сточным водам относят воды, удаляемые из туалетных комнат, ванн, душевых, кухонь, бань, прачечных, столовых, больниц. Они загрязнены в основном физиологическими отбросами и хозяйственно-бытовыми отходами.
    Производственными сточными водами являются воды, использованные в различных технологических процессах (например, для промывки сырья и готовой продукции, охлаждения тепловых агрегатов и т.п.), а также воды, откачиваемые на поверхность земли при добыче полезных ископаемых. Производственные сточные воды ряда отраслей промышленности загрязнены главным образом отходами производства, в которых могут находиться ядовитые вещества (например, синильная кислота, фенол, соединения мышьяка, анилин, соли меди, свинца, ртути и др.), а также вещества, содержащие радиоактивные элементы ; некоторые отходы представляют определенную ценность (как вторичное сырьё). В зависимости от количества примесей производственные сточные воды подразделяют на загрязнённые, подвергаемые перед выпуском в водоём (или перед повторным использованием) предварительной очистке, и условно чистые (слабо загрязнённые), выпускаемые в водоём (или вторично используемые в производстве) без обработки.
    Атмосферные сточные воды – дождевые и талые (образующиеся в результате таяния льда и снега) воды. По качественным характеристикам загрязнений к этой категории относят также воды от поливки улиц и зелёных насаждений. Атмосферные сточные воды, содержащие преимущественно минеральные загрязнения, менее опасны в санитарном отношении, чем бытовые и производственные сточные воды.
    Степень загрязнённости сточные воды оценивается концентрацией примесей, т. е. их массой в единице объёма (в мг/л или г/м.3).
    Состав бытовых сточных вод более или менее однообразен; концентрация загрязнений в них зависит от количества расходуемой (на одного жителя) водопроводной воды, т. е. от нормы водопотребления. Загрязнения бытовых сточных вод обычно подразделяют на: нерастворимые, образующие крупные взвеси (в которых размеры частиц превышают 0,1 мм) либо суспензии, эмульсии и пены (в которых размеры частиц составляют от 0,1 мм до 0,1 мкм), коллоидные (с частицами размером от 0,1 мкм до 1 нм), растворимые (в виде молекулярно-дисперсных частиц размером менее 1 нм).
    Различают загрязнения бытовых сточных вод: минеральные, органические и биологические. К минеральным загрязнениям относятся песок, частицы шлака, глинистые частицы, растворы минеральных солей, кислот, щелочей и многие др. вещества. Органические загрязнения бывают растительного и животного происхождения. К растительным относятся остатки растений, плодов, овощей, бумага, растительные масла и пр. Основной химический элемент растительных загрязнений – углерод.
    Загрязнениями животного происхождения являются физиологические выделения людей и животных, остатки тканей животных, клеевые вещества и пр. Они характеризуются значительным содержанием азота. К биологическим загрязнениям относятся различные микроорганизмы, дрожжевые и плесневые грибки, мелкие водоросли, бактерии, в том числе болезнетворные (возбудители брюшного тифа, паратифа, дизентерии, сибирской язвы и др.). Этот вид загрязнений свойственен не только бытовым сточным водам, но и некоторым видам производственных сточных вод, образующимся, например, на мясокомбинатах, бойнях, кожевенных заводах, биофабриках и т.п. По своему химическому составу они являются органическими загрязнениями, но их выделяют в отдельную группу ввиду санитарной опасности, создаваемой ими при попадании в водоёмы.
    В бытовых сточных водах минеральных веществ содержится около 42% (от общего количества загрязнений), органических – около 58%; осаждающиеся взвешенные вещества составляют 20%, суспензии – 20%, коллоиды – 10%, растворимые вещества – 50%.
    Состав и степень загрязнённости производственных сточных вод весьма разнообразны и зависят главным образом от характера производства и условий использования воды в технологических процессах.
    Количество атмосферных вод меняется в значительных пределах в зависимости от климатических условий, рельефа местности, характера застройки городов, вида покрытия дорог и др. Так, в городах Европейской части России дождевой сток в среднем один раз в году может достигать 100-150 л/сек с 1 га. Годовой сток дождевых вод с застроенных территорий в 7-15 раз меньше, чем бытовых.

    1.2 Физическое состояние сточных вод
    Физическое состояние сточных вод бывает трех видов:

    Нерастворенный вид;

    Коллоидный вид;

    Растворенный вид.

    Нерастворенные вещества находятся в сточных водах в виде грубой суспензии с размером частиц более 100мк и в виде тонкой суспензии (эмуль­сии) с размером частиц от 100 до 0,1мк. Исследования показывают, что в бы­товых сточных водах количество нерастворенных взвешенных веществ оста­ется более или менее постоянным и равно 65г/сутки на одного человека, пользующегося канализацией; из них 40г могут осаждаться при отстаивании.

    Коллоидные вещества в воде имеют размеры частиц в пределах от 0,1 до 0,001мк. На состав коллоидной фазы бытовых сточных вод влияют её органи­ческие составляющие – белки, жиры и углеводы, а также продукты их физио­логической обработки. Большое влияние оказывает также и качество водо­проводной воды, содержащей то или иное количество карбонатов, сульфатов и железа.

    В сточной воде кроме азота и углерода содержится также большое коли­чество серы, фосфора, калия, натрия, хлора и железа. Эти химические эле­менты входят в состав органических или минеральных веществ, находящихся в сточной воде в нерастворенном, коллоидном или растворенном состоянии. Количество этих веществ, вносимых с загрязнениями в сточные воды , может быть различно и зависит от характера образования.

    Однако для бытовых сточных вод количество химических веществ, вно­симых с загрязнениями на одного человека остается более или менее посто­янным. Так, на одного человека в сутки приходится (г):

    Таблица 1. Химические вещества, вносимые загрязнением на одного человека

    Концентрация этих веществ в сточной воде (мг/л), меняется в зависимо­сти от степени разбавления загрязнений водой: чем выше норма водоотведе­ния тем ниже концентрация. Содержание в сточной воде железа и сульфатов зависит главным образом от присутствия их в водопроводной воде.

    Количество указанных выше, а также других ингредиентов, поступаю­щих с загрязнениями в ПСВ, сильно колеблется и зависит не только от со­держания их в разбавляемой водопроводной воде и обрабатываемом про­дукте, но и от технологического процесса производства, режима поступления вод в производственную сеть и других причин. Следова­тельно, для данного вида производства можно установить лишь примерное количество загрязне­ний, содержащихся в сбрасываемых ПСВ. При проектировании производст­венной канализации необхо­димо иметь данные анализа ПСВ, и только в том случае, если такие данные получить нельзя, можно пользоваться данными по аналогичным производствам.


      1. Состав сточных вод

    Состав и количество ПСВ различны. Даже предприятия одного типа, на­пример кожевенные заводы, в зависимости от характера технологического процесса могут сбрасывать сточные воды раз­личного состава и в различных количествах.

    Некоторые ПСВ содержат загрязнения, не больше, чем бытовые, но дру­гие значительно больше. Так, вода от рудообо­готительных фабрик содержит до 25000мг/л взвешенных частиц, от шерсто­моек – до 20000мг/л.

    ПСВ делятся на условно чистые и загряз­ненные. Условно чистые воды чаще те, которые использовались для охлаж­дения; они почти не меняется, а только нагреваются.

    Загрязненные производственные воды делятся на группы, содержащие определенные загрязнения: а) преимущественно минеральные; б) преимуще­ственно органические, минеральные; в) органические, ядовитые вещества.

    ПСВ в зависимости от концентрации за­грязнений могут быть высоко­концентрированными и слабоконцентрирован­ными. В зависимости от актив­ной реакции воды производственные воды по степени агрессивности делятся на малоагрессивные воды (слабокислые с рН = 6 – 6,6 и слабощёлочные с рН = 8 – 9) и сильноагрессивные (с рН 9).


      1. Бактериальные загрязнения сточных вод

    Флора и фауна сточных вод представлены бактериями, вирусами, бакте­риофагами, гельминтами и грибами. В сточной жидкости находится огромное количество бактерий: в 1мл сточной воды их может быть до 1млрд.

    Большая часть этих бактерий относится к разряду безвредных (сапро­фитные бактерии), размножающихся на мертвой органической среде, но имеются и такие, которые размножаются и живут на живой материи (пато­генные бактерии), разрушая в процессе своей жизнедеятельности живой ор­ганизм. Патогенные микроорганизмы, встречающиеся в городских сточных водах, представлены возбудителями брюшного тифа, паратифа, дизентерии, водной лихорадки, туляремии и др.

    О загрязненности воды болезнетворными бактериями говорит присутст­вие в ней особого вида бактерий – группы кишечной палочки. Эти бактерии не болезнетворные, но их присутствие указывает, что в воде могут нахо­диться и болезнетворные бактерии. Чтобы оценить степень загрязненности воды патогенными бактериями, определяют коли – титр, т.е. наименьшее ко­личество воды в мл, в котором содержится одна кишечная палочка. Так, если титр кишечной палочки равен 100, то это значит, что в 10мл исследуемой воды содержится одна кишечная палочка. При титре, равном 0,1, количество бактерий в 1мл равно 10 и т.д. Для сточных городских вод титр кишечной па­лочки обычно не превышает 0,000001. Иногда определяют коли – индекс, или число кишечных палочек в 1л воды.


      1. Водоём как приемник сточных вод

    Приемниками сточных вод в большинстве служат водоёмы. Сточные воды перед спуском в водоём необходимо частично или полностью очистить. Однако в водоёме находится определенный запас кислорода, который может быть частично использован для окисления органического вещества, посту­пающего в него совместно со сточной водой; водоём обладает некоторой очищающей способностью, т.е. в нем с помощью микроорганизмов – ми­нерализаторов могут окисляться органические вещества, но содержание рас­творенного кислорода в воде будет падать. Зная об этом, можно снизить сте­пень очистки сточных вод на очистных сооружениях перед сбросом их в во­доём.

    Не следует преувеличивать возможности водоёмов, в частности рек, в отношении приема больших масс сточных вод даже в том случае, если кисло­родный баланс позволяет осуществить такой сброс без окончательной очи­стки. Любой, даже небольшой , водоём используется для массового купания и имеет архитектурно – декоративное и санитарное значение.


      1. Методы очистки ПСВ

    ПСВ обычно делятся на 3 основные группы:


    1. Чистые воды, используемые обычно для охлаждения;

    2. Малозагрязненные, или условно чистые, воды, образующиеся от про­мывки готовой продукции;

    3. Грязные воды.
    Чистые и малозагрязненные воды можно направлять в систему оборот­ного водоснабжения или использовать для разбавления загрязненных вод для снижения концентрации загрязнения. Часто применяют раздельное отведение ПСВ и раздельную очистку этих вод теми или иными методами перед спус­ком в водоём. Это оправдывается экономически.

    Для очистки ПСВ применяют следующие ме­тоды:


    1. Механическая очистка.

    2. Физико-химическая очистка.

    3. Химическая очистка.

    4. Биологическая очистка.
    Когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным. Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примесей.
    1.6.1. Механическая очистка ПСВ
    Механическая очистка ПСВ предназначается для выделения из них не­растворенных и частично коллоидных примесей. К методам механической очистки относятся: а) процеживание; б) отстаивание; в) фильтрование; г) уда­ление нерастворенных примесей в гидроциклонах и на центрифугах.

    Процеживание применяют для выделения из сточной жидкости крупных плавающих веществ и более мелких, главным образом волокнистых загрязне­ний. Для выделения крупных веществ применяют решетки, а более мелких – сита. Решетки для предварительной очистки обязательно устраивать для всех очистных станций. Сита применяют как самостоятельные устройства, после прохождения которых ПСВ могут быть сбро­шены либо в водоём, либо в городскую канализационную сеть.

    Отстаиванием выделяют из ПСВ нераство­ренные и частично коллоид­ные загрязнения минерального и органического происхождения. Отстаива­нием удается выделить из сточной воды как час­тицы с удельным весом, большим, чем удельный вес воды (тонущие), так и с меньшим удельным ве­сом (плавающие). Отстойники для очистки ПСВ могут представлять собой самостоятельные сооруже­ния, процесс очистки на которых заканчивается, или же сооружения, предна­значенные только для предварительной очистки. Для выделения тонущих не­растворимых примесей применяют как горизон­тальные, так и радиальные от­стойники по своей конструкции они мало отли­чаются от отстойников, приме­няемых для осветления бытовых сточных вод.

    Фильтрование служит для задерживания взвеси, не осевшей при отстаи­вании. Применяют песчаные фильтры, диатомитовые фильтры и сетчатые фильтры с фильтрующим слоем.

    Песчаные фильтры применяют при невысоком содержании взвешен­ных веществ. Хорошо зарекомендовали себя двухслойные фильтры. Нижний слой загрузки – песчаный крупностью зерен 1 – 2 мм, а верхний слой – антра­цитовая крошка. Сточная вода подается сверху, затем подают промывную воду и отводят грязную.

    Диатомитовые фильтры. В этих фильтрах сточная жидкость фильтру­ется через тонкий слой диатомита, наносимый на пористые поверхности. В качестве пористых материалов применяют керамику, металлическую сетку и ткань. Применяют также искусственные порошкообразные составы из диато­мита с высокой адсорбционной способностью. Такие фильтры обеспечивают высокий эффект очистки.

    Гидроциклоны применяют для осветления сточных вод и сгущения осадка. Они бывают открытые и напорные. Открытые гидроциклоны приме­няются для выделения из сточных вод структурных оседающих и грубодис­персных всплывающих примесей. Напорные гидроциклоны служат для выде­ления из сточных вод только оседающих агрегатоустойчивых грубодисперс­ных структурных примесей. Открытые гидроциклоны бывают без внутренних устройств, с диафрагмой и цилиндрической перегородкой и многоярусные. Последние применяют для выделения тяжелых неслеживающихся грубодис­персных примесей и нефтепродуктов.
    1.6.2. Физико-химическая очистка ПСВ

    К физико-химическим методам очистки относятся: а) экстракция; б) сорбция; в) кристаллизация; г) флотация.

    А) Экстракция. Сущность экстракционного метода очистки производ­ственных сточных вод состоит в следующем. При смешивании взаимонерас­творенных жидкостей загрязняющие вещества, содержащиеся в них, распре­деляются в этих жидкостях соответственно своей растворимости.

    Если в сточной воде содержится фенол, то для его выделения воду можно смешать с бензолом (растворителем), в котором фенол растворяется в значительно большей степени. Таким образом, последовательно действуя бензолом на воду, можно добиться почти полного удаления фенола из воды.

    В качестве растворителей обычно применяют различные органические вещества: бензол, четыреххлористый углерод и т.д.

    Экстракцию проводят в металлических резервуарах-экстракторах, имеющих форму колонн с насадками. Снизу подается растворитель, удель­ный вес которого меньше удельного веса воды, вследствие чего растворитель поднимается вверх. Загрязненная сточная вода подводится сверху. Слои воды, встречая на своем пути растворитель, постепенно отдают загрязняющие воду вещества. Очищенная от загрязнений вода отводится снизу. Таким приемом, в частности, можно очищать ПСВ, со­держащие фенол.

    Б) Сорбция. Этот процесс заключается в том, что загрязнения из сточ­ной жидкости поглощаются телом твердого вещества (адсорбция), осажда­ются на его активно развитой поверхности (адсорбция) или вступают в химическое взаимодействие с ним (хемосорбция). Для очистки ПСВ чаще всего пользуются адсорбцией. В этом случае к очищаемой сточной жидкости до­бавляют сорбент (твердое тело) в размельченном виде и перемешивают со сточной водой. Затем сорбент, насыщенный загрязнениями, отделяют от воды отстаиванием или фильтрованием. Чаще очищаемую сточ­ную воду пропус­кают непрерывно через фильтр, загруженный сорбентом. В качестве сорбен­тов применяют: активированный уголь, коксовую мелочь, торф, каолин, опилки, золу и т. д. Лучшее, но наиболее дорогое вещество – активированный уголь.

    Метод сорбции можно использовать, например, для очистки ПСВ от га­зогенераторных станций, содержащих фенол, а также ПСВ, содержащих мышьяк, сероводород и т.д.

    в) Кристаллизация. Этот метод очистки можно использовать только при значительной концентрации загрязнений в ПСВ и способности их обра­зовывать кристаллы. Обычно предварительный процесс – выпаривание сточ­ной воды, чтобы создать повышенную концен­трацию загрязнений, при кото­рой возможна их кристаллизация. Для ускоре­ния процесса кристаллизации загрязнений сточная вода охлаждается и пере­мешивается. Выпаривание и кристаллизация сточной воды осуществляются обычно в естественных пру­дах и водоёмах. Этот способ очистки ПСВ неэкономичен, поэтому широкого применения не полу­чил.

    Г) Флотация. Процесс основан на всплывании дисперсных частиц вме­сте с пузырьками воздуха. Его успешно применяют в ряде отраслей техники и для очистки ПСВ. Процесс флотации состоит в том, что молекулы нераство­римых частиц прилипают к пузырькам воздуха и всплывают вместе на по­верхность. Успех флотации в значительной степени зависит от величины по­верхности пузырьков воздуха и от площади контакта их с твердыми части­цами. Для повышения эффекта флотации в воду вводят реагенты.
    1.6.3 Химический анализ ПСВ
    Состав сточных вод, даже качественный, часто трудно предвидеть. В первую очередь это относится к сточным водам после химической и биохимической очистки, так как в результате образуются новые химические соединения. Поэтому, как правило, следует предварительно проверить пригодность даже достаточно хорошо проверенных методик определения отдельных компонентов и схем анализа.

    Основные требования к методам анализа сточных вод – высокая селективность , в противном случае могут возникнуть систематические ошибки, совершенно искажающие результат исследования. Меньшее значение имеет чувствительность анализа, поскольку можно брать большие объемы анализируемой воды или прибегнуть к подходящему способу концентрирования определяемого компонента.

    Для концентрирования определяемых компонентов в сточных водах применяют экстракцию, выпаривание, отгонку, сорбцию, соосаждение, вымораживание воды.

    Таблица 2. Схемы разделения компонентов сточных вод с высоким содержанием летучих органических веществ.


    Вариант 1

    Пробу подкисляют Н 2 SO 4 до слабокислой реакции, отгоняют с водяным паром до получения небольшого остатка

    Дистилат 1: летучие кислоты и нейтральные вещества

    Подщелачивают и вновь отгоняют с водяным паром до получения небольшого остатка


    Остаток 1: нелетучие кислоты, сульфаты аминов, фенолы и нейтральные вещества


    Остаток 2: натриевые соли летучих кислот, фенолы

    Вариант 2

    Пробу подщелачивают и отгоняют с водяным паром до получения небольшого остатка

    Дистилат 1: летучие основания и нейтральные вещества

    Остаток 1: соли летучих и нелетучих кислот

    Подкисляют и отгоняют с водяным паром до получения небольшого остатка

    Дистилат 2: летучие нейтральные соединения

    Остаток 2: соли летучих оснований. Подмешивают и экстрагируют эфиром

    Таблица 3. Схема разделения компонентов сточных вод с низким содержанием летучих органических веществ


    К пробе (25-100 мл) сточной воды прибавляют до насыщения NaCl и HCl до концентрации ≈ 5%

    Экстрагируют диэтиловым эфиром

    Экстракт 1: нейтральные соединения, кислоты. Трижды обрабатывают 5 %-ным раствором NaOH

    Водная фаза1: прибавляют NaOH до рН ≥ 10, экстрагируют несколько раз эфиром, объединяют экстракты

    Водная фаза 2: слабые кислоты (в основном фенолы). Насыщают CO 2 до появления осадка NaHCO 3 , обрабатывают несколькими порциями эфира, экстракты объединяют

    Эфирный слой: нейтральные вещества. Сушат безв. Na 2 SO 4 , отгоняют эфир, сухой остаток взвешивают, растворяют в эфире, переносят на колонку с силикагелем. Последовательно элюируют алифатическим соединением изооктаном, ароматическим бензолом. Из каждого элюата выпаривают растворитель, остаток взвешивают.

    Водная фаза 3: амфотерные нелетучие соединения, растворимые в воде лучше: чем в эфире. Нейтрализуют СН 3 СООН, экстрагируют несколькими порциями эфира, объединяют экстракты

    Эфирный слой: основные соединения. Высушивают Na 2 SO 4 , отгоняют эфир, сухой остаток взвешивают

    Эфирный слой сушат безв. Na 2 SO 4 , отгоняют эфир, сухой остаток взвешивают

    Водная фаза. Удаляют эфир, подкисляют, обрабатывают несколькими порциями эфира

    Объединенные экстракты: амфотерные вещества. Сушат Na 2 SO 4 , отгоняют эфир, сухой остаток взвешивают

    Водная фаза. Подкисляют до рН 3-4, выпаривают досуха. Остаток пригоден для определения углерода

    Эфирный слой сушат Na 2 SO 4 , отгоняют эфир. Остаток взвешивают.

    Водная фаза отбрасывается

    1.6.3.1 Определение органических веществ методом хроматографии
    Из стоков в поверхностные воды попадает бензин, керосин, топливные и смазочные масла, бензол, толуол, жирные кислоты, фенолы, пестициды, синтетические моющие препараты, металлорганические и другие органические соединения. Органические вещества в пробах сточных вод, отобранных для анализа, легко изменяются в результате химических и биохимических процессов, поэтому отобранные пробы нужно проанализировать как можно быстрее. В табл. 2, 3 приведены схемы разделения органических веществ, присутствующих в сточных водах.

    Для идентификации и количественного определения широко применяются различные хроматографические методы – газовую, колоночную, жидкую хроматографию, хроматографию на бумаге, тонкослойную. Для количественного определения наиболее подходящим методом является газовая хроматография.

    В качестве примера рассмотрим определение фенолов. Эти соединения образуются или применяются в процессе переработки нефти, производства бумаги, красителей, лекарственных препаратов, фотоматериалов и синтетических смол. Физические и химические свойства фенолов позволяют сравнительно легко их определять методом газовой хроматографии.
    1.6.3.2 Определение органических соединений методом масс-спектрометрии
    При анализе сточных вод особенно важны возможности масс-спектрометрии в части идентификации соединений неизвестной структуры и анализа сложных смесей, определения микрокомпонентов на фоне сопутствующих веществ, концентрация которых на порядки превышает концентрации определяемых компонентов. Здесь подходят ГЖХ с МС, тандемная МС, сочетание ВЭЖХ и МС для анализа нелетучих веществ, а также методы «мягкой ионизации», и селективная ионизация.

    Остаточные количества октилфенолполиэтоксилатов в сточных водах, продукты их биодеградации и хлорирования, образующиеся в процессе биологической обработки и дезинфекции сточных вод, могут быть определены методом ГЖХ – МС с ЭУ или химической ионизации.

    Необходимость анализа соединений разной летучести нашла свое отражение в схеме анализа следовых количеств органических соединений, содержащихся в сточных водах после их обработки на очистной станции. Здесь для количественных определений применяли ГЖХ, а качественный анализ осуществляли с помощью ГХ – МС. Высоколетучие соединения – галогенуглеводороды С 1 – С 2 экстрагировали пентаном из 50 мл пробы воды; 5 мкл экстракта вводили в колонку 2мх 4 мм с 10% сквалана на Хромосорбе W – AW при температуре 67 °С; газ-носитель – смесь аргона и метана; детектор электронозахватный с 63 Ni. Если нужно было определять метиленхлорид, то элюирующийся вместе с ним пентан заменяли октаном, который элюируется позже. В качестве внутреннего стандарта использовали 1,2-дибромэтан. Группу ароматических углеводородов определяли с помощью парофазного анализа в замкнутой петле.

    Сочетание разных методов ионизации позволяет более надежно идентифицировать различные компоненты загрязнения сточных вод. Для общей характеристики органических веществ, присутствующих в сточных водах и осадках сточных вод, применяется сочетание ГХ и МС с ионизацией ЭУ и ХИ. Органические соединения экстрагируемые из сточных вод гексаном, хромотографировали на силикагеле, элюируя гексаном, метиленхлоридом и эфиром. Полученные фракции анализировали на системе , состоящей из газового хроматографа с капиллярной трубкой длинной 25 м, присоединенного к источнику ионов масс-спектрометра с двойной фокусировкой. Температуру колонки программировали от 40 до 250 °С со скоростью 8 °С/мин. По газохроматографическим временам удерживания и масс-спектрам ЭУ и ХИ идентифицировано 66 соединений. Среди этих соединений были галогенированые метоксибензолы, дихлорбензол, гексахлорбензол, метилированный триклозан, оксадиазон и др. Этот метод позволил дать и полуколичественную оценку концентраций этих соединений.
    1.6.3.3 Химические тест-метды анализа
    Фирмой HNU Systems Inc. Выпускают тест-наборы для определения сырой нефти, горючего топлива, отработанного масла в почве и воде. Метод основан на алкилировании по Фриделю – Крафтсу ароматических углеводородов, находящихся в нефтепродуктах, алкилгалогенидами с образованием окрашенных продуктов:

    В качестве катализатора используют безводный хлорид алюминия. При анализе воды экстракцию проводят из 500 мл пробы. В зависимости от определяемого компонента появляются следующие окраски экстракта:


    • Бензол – от желтого до оранжевого;

    • Толуол, этилбензол, ксилол – от желто-оранжевого до ярко-оранжевого;

    • Бензин – от бежевого до красно-коричневого;

    • Дизельное топливо – от бежевого до зеленого.
    Цветные шкалы составлены для воды в диапазонах 0,1 – 1 – 5 – 10 – 20 – 50 – 100 мг/л.

    В тест-анализе фенол и его производные преимущественно определяют по образованию азокрасителя. Наиболее распространенным является следующий способ: первая стадия – диазотирование первичного ароматического амина нитритом натрия в кислой среде, приводящее к образованию соли диазония:
    ArNH 2 + NaNO 2 + 2HCl → + Cl ¯ + NaCl + 2H 2 O,
    Вторая стадия – сочетание соли диазония с фенолами в щелочной среде, приводящее к образованию азосоединения:
    + Cl ¯ + Ph–OH → ArN=N–Ph–OH + HCl
    Если пара положение закрыто, то образуется о -азосоединение:

    Азосочетание с оксисоединениями, наиболее активными в форме фенолят-анионов, проводят почти всегда при рН 8 – 11. Соли диазония

    В водном растворе неустойчивы и постепенно разлагаются на фенолы и азот, поэтому основная сложность создания тест-методов для определения фенолов и аминов как раз и заключается в получении стабильных диазосоединений.

    В качестве стабильного при хранении реагента для определения фенола предложена комплексная соль тетрафторбората 4-нитрофенилдиазония (НДФ):
    O 2 N–Ph–NH 2 + BF 4 → BF 4
    Для определения фенола к 1мл анализируемой жидкости добавляют 1 квадратик фильтровальной бумаги, пропитанной НДФ, и 1 квадратик бумаги пропитанной смесью карбоната натрия и хлорида цетилпиридиния (ЦП).

    В присутствии ЦП происходит углубление окраски, связанное с образованием ионного ассоциата по диссоциированной оксигруппе:
    O 2 N–Ph–N≡N + + Ph–OH → O 2 N–Ph–N=N–Ph–OH

    O 2 N–Ph–N=N–Ph–O ¯ ЦП +
    Определению фенола не мешают 50-кратные количества анилина. Не мешают определению 2,4,6-замещенные фенола, 2,4-замещенные 1-нафтола и 1-замещенные 2-нафтола. Диапазоны определяемых содержаний для фенола: 0,05 – 0,1 – 0,3 – 0,5 – 1 – 3 – 5 мг/л. Разработанные тесты были применены для определения фенола в сточных водах.

    Наиболее в тест-методах используют в качестве реагента 4-аминоантипирин. Фенол и его гомологи с 4-аминоантипирином образуют окрашенные соединения в присутствии гексацианофератта (III) при рН 10:

    Практически не реагируют с 4-аминоантипирином n-крезол и те паразамещенные фенолы, в которых замещающими группами являются алкил-, бензоил-, нитро-, нитрозо- и альдегидные группы. Диапазон определяемых содержаний для систем NANOCOLOR ® Phenol, Hach Co., CHEMetrics составляет 0,1 – 5,0 мг/л фенола.

    2. Практическая часть
    2.1 Теоретические основы методов контроля качества очистки ПСВ
    Для контроля качества очистки ПСВ необхо­димо создание специальных лабораторий, например, лаборатория промыш­ленной санитарии.

    Так как состав ПСВ довольно разнообразен, необходимо постоянное наблюдение за качеством очистки этих вод.

    Рассмотрим некоторые методики определения органических соединений в природных сточных водах.
    2.1.1 Метод газовой хроматографии
    Анализируем фенол и его производные.

    Анализируемую сточную воду разбавляют равным объемом 1 М раствора гидроксида натрия, экстрагируют смесью 1: 1 диэтилового и петролейного эфиров для отделения всех других органических веществ, содержащихся в сточной воде, от натриевых солей фенолов, оставшихся в водной фазе. Водную фазу отделяют, подкисляют и вводят в газовый хроматограф. Чаще, однако, фенолы экстрагируют бензолом и хроматографируют полученный бензольный экстракт. Хроматографировать можно как фенолы так и их метиловые эфиры. На рисунке приведена газовая хроматограмма бензольного экстракта смеси фенолов, полученная на стеклянной колонке длинной 180 см с наружным диаметром 6 мм, заполненной жидкой углеводной фазой типа апиезона L. Хроматографирование проводили при температуре колонки 170 °С, температура детектора 290 °С, скорости газа-носителя 70 мл/мин. Использовали пламенно ионизационный детектор. В указанных условиях разделение пиков на хроматограмме достаточно четко, и можно провести количественное определение о - и п -хлорфенолов, фенола и м -крезола.

    Для определения малого количества органических соединений необходимо предварительное концентрирование их сорбцией на активном угле. В зависимости от содержания органических соединений может понадобиться от 10 – 20 г, до 1,5 кг угля. После пропускания анализируемой воды через специально очищенные вещества необходимо десорбировать. Для этого уголь высушивают на медном или стеклянном подносе в атмосфере чистого воздуха, помещают высушенный уголь в бумажный патрон, закрытый стеклянной ватой , и десорбируют подходящим растворителем в аппарате типа Сокслета в течении 36 или более часов.

    Ни один чистый растворитель не способен извлечь все сорбированные органические вещества, поэтому приходится прибегать к последовательной обработке несколькими растворителями или использовать смеси растворителей. Наиболее удовлетворительное извлечение сорбированных органических веществ достигается при применении смеси 47 % 1,2- дихлопропанола и 53 % метанола.

    После извлечения растворитель отгоняют, остаток растворяют в хлороформе. Если остался нерастворимый остаток, его растворяют в уксусной кислоте, выпаривают и сухой остаток взвешивают. Хлороформный раствор растворяют в эфире и далее проводят анализ приведенный в табл. 3.
    Рис. 4. Газовая хроматограмма бензольного экстракта смеси фенолов из образца сточной воды: 1 – о-хлорфенол; 2 – фенол; 3 – м-крезол; 4 – п-хлорфенол.
    2.1.2 Метод масс-спектроскопии

    Пробу помещали в экстрактор, добавляли внутренний стандарт, закрывали фильтром из активированного угля и продували через фильтр паровую фазу в течении 30 с для удаления примесей из воздуха. После этого ставили чистый фильтр и устанавливали расход 1,5 л/мин. Через 2 ч фильтр снимали и экстрагировали тремя порциями CS 2 по 7мкл и анализировали с помощью капиллярной ГЖХ с детектором ионизации в пламени. Хлорированные углеводороды, пестициды, полихлордифенилы, полицеклические ароматические углеводороды экстрагировали гексаном 2 × 15 мл в 1 л пробы воды. Фазы разделяли после отстаивания не менее 6 ч. экстракты сушили, концентрировали до 1 мл в токе азота и очищали на колонке с флорисиом. Хлорированные углеводороды, пестициды и дифенилы элюировали 70 мл смеси гексана и эфира (85:15) и концентрировали до 1 мл. Концентрат анализировали на стеклянной капиллярной колонке длинной 50 м с SE-54 с электронозахватным детектором, идентификацию неизвестных соединений осуществляли с помощью ГХ – МС.

    Хлорированные парафиновые углеводороды в грязевых стоках, осадках и других объектах окружающей среды определяли путем обработки проб серной кислотой и разделением с помощью адсорбционной хроматографии на Al 2 O 3 на фракции с минимальным загрязнением другими соединениями. Эти фракции в растворе гексана вводили в хроматографическую колонку 13 м × 0,30 мм с SE-54 . Начальная температура колонки была 60 °С, через 1 мин температуру начали повышать со скоростью 10 °С/мин до 290 °С. Регистрировали полные масс-спектры в интервале масс от 100 до 600 а. е. м. через каждые 2с. Предел обнаружения был равен 5 нг, что соответствовало относительной концентрации 10 -9 .
    Выводы
    Развитие природоохранных сооружений не может проводиться без соответствующего экологического обоснования. Основой такого обоснования является оценка воздействия очищенных сточных вод на водоприемники. Необходимость проведения работ по оценке состояния водоёмов и водотоков была сформулирована еще в конце позапрошлого века.

    Систематические анализы качества очищенной и речной воды были начаты в 1903 г. лабораторией профессора В. Р. Вильямса в с/х Академии.

    В химической промышленности намечено более широкое внедрение малоотходных и безотходных технологических процессов, дающих наибольший экологический эффект. Большое внимание уделяется повышению эффективности очистки производственных сточных вод.

    Значительно уменьшить загрязненность воды, сбрасываемой предприятием, можно путем выделения из сточных вод ценных примесей, сложность решения этих задач на предприятиях химической промышленности состоит в многообразии технологических процессов и получаемых продуктов. Следует отметить также, что основное количество воды в отрасли расходуется на охлаждение. Переход от водяного охлаждения к воздушному позволит сократить на 70-90 % расходы воды в разных отраслях промышленности.

    Список литературы


    1. СНиП 2.04.02 – 84. Водоснабжение. Наружные сети сооружения – М.: Стройиздат, 1985 г.
    2. Лурье Ю. Ю. Аналитическая химия промышленных сточных вод.

    М.: Химия, 1984 г.

    3. Новиков Ю. В., Ласточкина К. О., Болдина З. Н. Методы

    исследования качества воды водоёмов. Издание 2-е,

    переработанное и дополненное. М., «Медицина», 1990 г., 400 с. с

    иллюстрациями.

    4. Яковлев С. В., Ласков Ю. М. Канализация. Издание 5-е,

    переработанное и дополненное. Учебник для техникумов. М.,

    Стройиздат, 1972 г., 280 с. с иллюстрациями.

    5. Золотов Ю. А., Иванов В. М., Амелин В. Г. Химические тест-

    методы анализа. – М.: Едиториал УРСС, 2002. – 304 с.

    6. Масс-спектрометрия загрязнений окружающей среды /

    Р. А. Хмельницкий, Е. С. Бродинский. – М.: Химия, 1990. – 184 с.

    7. Моросанова С. А., Прохорова Г. В., Семеновская Е. Н.

    Методы анализа природных и промышленных объектов:

    Учеб. пособие. – М.: Изд-во Моск. Ун-та, 1988. 95 с.

    • Сергей Савенков

      какой то “куцый” обзор… как будто спешили куда то