Сущность sp3 гибридизации. Гибридизация электронных орбиталей и геометрия молекул

Большинство органических соединений имеют молекулярное строение. Атомы в веществах с молекулярным типом строения всегда образуют только ковалентные связи друг с другом, что наблюдается и в случае органических соединений. Напомним, что ковалентным называется такой вид связи между атомами, который реализуется за счет того, что атомы обобществляют часть своих внешних электронов с целью приобретения электронной конфигурации благородного газа.

По количеству обобществлённых электронных пар ковалентные связи в органических веществах можно разделить на одинарные, двойные и тройные. Обозначаются данные типы связей в графической формуле соответственно одной, двумя или тремя чертами:

Кратность связи приводит к уменьшении ее длины, так одинарная С-С связь имеет длину 0,154 нм, двойная С=С связь – 0,134 нм, тройная С≡С связь – 0,120 нм.

Типы связей по способу перекрывания орбиталей

Как известно, орбитали могут иметь различную форму, так, например, s-орбитали имеют сферическую, а p-гантелеобразную форму. По этой причине связи также могут отличаться по способу перекрывания электронных орбиталей:

ϭ-связи – образуются при перекрывании орбиталей таким образом, что область их перекрывания пересекается линией, соединяющей ядра. Примеры ϭ-связей:

π-связи – образуются при перекрывании орбиталей, в двух областях – над и под линией соединяющей ядра атомов. Примеры π-связей:

Как узнать, когда в молекуле есть π- и ϭ-связи?

При ковалентном типе связи ϭ-связь между любыми двумя атомами есть всегда, а π-связь имеет только в случае кратных (двойных, тройных) связей. При этом:

  • Одинарная связь – всегда является ϭ-связью
  • Двойная связь всегда состоит из одной ϭ- и одной π-связи
  • Тройная связь всегда образована одной ϭ- и двумя π-связями.

Укажем данные типы связей в молекуле пропиновой кислоты:

Гибридизация орбиталей атома углерода

Гибридизацией орбиталей называют процесс, при котором орбитали, изначально имеющие разные формы и энергии смешиваются, образуя взамен такое же количество гибридных орбиталей, равных по форме и энергии.

Так, например, при смешении одной s- и трех p- орбиталей образуются четыре sp 3 -гибридных орбитали:

В случае атомов углерода в гибридизации всегда принимает участие s- орбиталь, а количество p -орбиталей, которые могут принимать участие в гибридизации варьируется от одной до трех p- орбиталей.

Как определить тип гибридизации атома углерода в органической молекуле?

В зависимости от того, со скольким числом других атомов связан какой-либо атом углерода, он находится либо в состоянии sp 3 , либо в состоянии sp 2 , либо в состоянии sp- гибридизации:

Потренируемся определять тип гибридизации атомов углерода на примере следующей органической молекулы:

Первый атом углерода связан с двумя другими атомами (1H и 1C), значит он находится в состоянии sp -гибридизации.

  • Второй атом углерода связан с двумя атомами – sp -гибридизация
  • Третий атом углерода связан с четырьмя другими атомами (два С и два Н) – sp 3 -гибридизация
  • Четвертый атом углерода связан с тремя другими атомами (2О и 1С) – sp 2 -гибридизация.

Радикал. Функциональная группа

Под термином радикал, чаще всего подразумевают углеводородный радикал, являющийся остатком молекулы какого-либо углеводорода без одного атома водорода.

Название углеводородного радикала формируется, исходя из названия соответствующего ему углеводорода заменой суффикса –ан на суффикс –ил .

Функциональная группа - структурный фрагмент органической молекулы (некоторая группа атомов), который отвечает за её конкретные химические свойства.

В зависимости того, какая из функциональных групп в молекуле вещества является старшей, соединение относят к тому или иному классу.

R – обозначение углеводородного заместителя (радикала).

Радикалы могут содержать кратные связи, которые тоже можно рассматривать как функциональные группы, поскольку кратные связи вносят вклад в химические свойства вещества.

Если в молекуле органического вещества содержится две или более функциональных группы, такие соединения называют полифункциональными.

Важной характеристикой молекулы, состоящей более чем из двух атомов, является ее геометрическая конфигурация. Она определяется взаимным расположением атомных орбиталей, участвующих в образовании химических связей.

Для объяснения геометрической конфигурации молекулы используется представление о гибридизации АО центрального атома. Возбужденный атом бериллия имеет конфигурацию 2s 1 2p 1 , возбужденный атом бора – 2s 1 2p 2 и возбужденный атом углерода – 2s 1 2p 3 . Поэтому можно считать, что в образовании химических связей могут участвовать не одинаковые, а различные атомные орбитали. Например, в таких соединениях как BeCl 2 , BCl 3 ,CCl 4 должны быть неравноценные по энергии и направлению связи. Однако экспериментальные данные показывают, что в молекулах, содержащих центральные атомы с различными валентными орбиталями

(s, p, d), все связи равноценны. Для устранения этого противоречия Полинг и Слейтер предложили концепцию гибридизации

Основные положения концепции гибридизации:

1. Гибридные орбитали образуются из различных атомных орбиталей, не сильно отличающиеся по энергиям,

2. Число гибридных орбиталей равно числу атомных орбиталей, участвующих в гибридизации.

3. Гибридные орбитали одинаковы по форме электронного облака и по энергии.

4 По сравнению с атомными орбиталями они более вытянуты в направлении образования химических связей и поэтому обусловливают лучшее перекрывание электронных облаков.

Следует отметить, что как физический процесс гибридизация орбиталей не существует. Метод гибридизации представляет собой удобную модель наглядного описания молекул.

Sp- гибридизация

sp–Гибридизация имеет место, например, при образовании галогенидов Be, Zn, Co и Hg (II). В валентном состоянии все галогениды металлов содержат на соответствующем энергетическом уровне s - и p-неспаренные электроны. При образовании молекулы одна s- и одна р-орбиталь образуют две гибридные sp-орбитали под углом 180 о (рис.5).

Рис.5 sp-гибридные орбитали

Экспериментальные данные показывают, что все галогениды Be, Zn, Cd и Hg (II) линейны, и обе связи имеют одинаковую длину.

sp 2 -гибридизация

В результате комбинации одной s-орбитали и двух p-орбиталей образуются три гибридные sp 2 -орбитали, расположенные в одной плоскости под углом 120 о друг к другу. Такова, например, конфигурация молекулы BF 3 (рис.6):

Рис.6 sp 2 -гибридные орбитали

sp 3 -гибридизация

sp 3 -Гибридизация характерна для соединений углерода. В результате комбинации одной s-орбитали и трех р-орбиталей образуются четыре гибридные sp 3 -орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109,5 о. Гибридизация проявляется в полной равноценности связей атома углерода с другими атомами в соединениях, например, в CH 4 , CCl 4 , C(CH 3) 4 и др.(рис.7).

Рис.7 sp 3 -гибридные орбитали

Метод гибридизации объясняет геометрию молекулы аммиака. В результате комбинации одной 2s и трёх 2p орбиталей азота образуются четыре гибридные орбитали sp 3 . Конфигурация молекулы представляет из себя искажённый тетраэдр, в котором три гибридных орбитали участвуют в образовании химической связи, а четвёртая с парой электронов – нет. Углы между связями N-H не равны 90 о как в пирамиде, но и не равны 109,5 о,соответствующие тетраэдру(рис.8):

Рис.8 sp 3 - гибридизация в молекуле аммиака

При взаимодействии аммиака с ионом водорода H + + ׃NH 3 = NH 4 + в результате донорно-акцепторного взаимодействия образуется ион аммония, конфигурация которого представляет собой тетраэдр.

Гибридизация объясняет также отличие угла между связями О–Н в угловой молекуле воды. В результате комбинации одной 2s и трёх 2p орбиталей кислорода образуются четыре гибридных орбитали sp 3 , из которых только две участвуют в образовании химической связи, что приводит к искажению угла, соответсвующего тетраэдру (рнс.9):

Рис 9 sp 3 - гибридизация в молекуле воды

В гибридизацию могут включаться не только s- и р-, но и d- и f-орбитали.

При sp 3 d 2 -гибридизации образуется 6 равноценных облаков. Она наблюдается в таких соединениях как 4- , 4- (рис.10). При этом молекула имеет конфигурацию октаэдра:

Рис. 10 d 2 sp 3 -гибридизация в ионе 4-

Представления о гибридизации дают возможность понять такие особенности строения молекул, которые не могут быть объяснены другим способом. Гибридизация атомных орбиталей (АО) приводит к смещению электронного облака в направлении образования связи с другими атомами. В результате области перекрывания гибридных орбиталей оказываются больше, чем для чистых орбиталей и прочность связи увеличивается.

Делокализованная π-связь

По методу МВС электронная структура молекулы выглядит как набор различных валентных схем (метод локализованных пар). Но, как оказалось, нельзя объяснить экспериментальные данные о структуре многих молекул и ионов, оперируя только представлениями о локализованной связи. Исследования показывают, что всегда локализованными являются только σ-связи. При наличии π-связей может иметь место делокализация , при которой связующая электронная пара одновременно принадлежит более чем двум атомным ядрам. Например, экспериментально установлено,что молекула BF 3 имеет плоскую треугольную форму(рис.6). Все три связи

B–F равноценны, однако величина межъядерного расстояния свидетельствует, что связь является промежуточной между одинарной и двойной. Объяснить эти факты можно следующим образом. У атома бора в результате комбинации одной s-орбитали и двух p-орбиталей образуются три гибридные sp 2 -орбитали, расположенные в одной плоскости под углом 120 о друг к другу, но остаётся неиспользованной свободная негибридизированная р-орбиталь, а атoмы фтора имеют неподелённые электронные пары. Поэтому имеется возможность образования π –связи по донорно- акцепторному механизму. Равноценность всех связей свидетельствует о делокализации π –связи между тремя атомами фтора.

Структурную формулу молекулы BF 3 с учётом делокализации π- связи можно изобразить следующими образом (нелокализованную связь обозначена пунктиром):

Рис .11 Строение молекулы BF 3

Нелокализованная π-связь обусловливает нецелочисленную кратность связи. В данном случае она равна 1 1 /3 поскольку между атомом бора и каждым из атомов фтора осуществляется одна σ–связь и 1 /3часть π-связи.

Точно также равноценность всех связей в ионе NO 3 – свидетельствует о делокализации π –связи и отрицательного заряда на все атомы кислорода. В плоском треугольном ионе NO 3 - (sp 2 -гибридизация атома азота) делокализованные

π-связи (изображены пунктирными линиями) равномерно распределяются между всеми атомами кислорода (рис.12)

Рис. 12 Структурная формула иона NO 3 - с учётом делокализации π- связи

Аналогично делокализованные π-связи равномерно распределяются между всеми атомами кислорода в анионах:PO 4 3- (sp 3 -гибридизация атома фосфора→тетраэдр) ,SO 4 2- (sp 3 -гибридизация атома серы→тетраэдр)(рис.13)

Рис.13 Структурные формулы SO 4 2- и PO 4 3- с учётом делокализации

Sp2-гибридизация

В результате гибридизации одной s-орбитали и двух p-орбиталей образуются три гибридные sp 2 -орбитали, расположенные в одной плоскости под углом 120 о друг к другу. Такова, например, конфигурация молекулы BF 3:

Рис.4 sp 2 -гибридизация

sp 3 -гибридизация характерна для соединений углерода. В результате гибридизации одной s-орбитали и трех

р-орбиталей образуются четыре гибридные sp 3 -орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109,5 о. Гибридизация проявляется в полной равноценности связей атома углерода с другими атомами в соединениях, например, в CH 4 , CCl 4 , C(CH 3) 4 и др.

Рис.5 sp 3 -гибридизация

Если все гибридные орбитали связаны с одинаковыми атомами, то связи ничем не отличаются друг от друга. В других случаях встречаются небольшие отклонения от стандартных валентных углов. Например, в молекуле воды H 2 O кислород - sp 3 -гибридный, находится в центре неправильного тетраэдра, в вершины которого "смотрят" два атома водорода и две неподеленные пары электронов (рис. 2). Форма молекулы угловая, если смотреть по центрам атомов. Валентный угол HОН составляет 105 о, что довольно близко к теоретическому значению 109 о.

Рис.6 sp 3 -гибридизация атомов кислорода и азота в молекулах а) H 2 O и б) NCl 3 .

Если бы не происходило гибридизации (“выравнивания” связей O-H), валентный угол HOH был бы равен 90°, потому что атомы водорода были бы присоединены к двум взаимно перпендикулярным р-орбиталям. В этом случае наш мир выглядел бы, вероятно, совершенно по-другому.

Теория гибридизации объясняет геометрию молекулы аммиака. В результате гибридизации 2s и трёх 2p орбиталей азота образуются четыре гибридные орбитали sp 3 . Конфигурация молекулы представляет из себя искажённый тетраэдр, в котором три гибридных орбитали участвуют в образовании химической связи, а четвёртая с парой электронов – нет. Углы между связями N-H не равны 90 о как в пирамиде, но и не равны 109,5 о, соответствующие тетраэдру.

Рис.7 sp 3 - гибридизация в молекуле аммиака

При взаимодействии аммиака с ионом водорода в результате донорно-акцепторного взаимодействия образуется ион аммония, конфигурация которого представляет собой тетраэдр.

Гибридизация объясняет также отличие угла между связями О-Н в угловой молекуле воды. В результате гибридизации 2s и трёх 2p орбиталей кислорода образуются четыре гибридных орбитали sp 3 , из которых только две участвуют в образовании химической связи, что приводит к искажению угла, соответсвующего тетраэдру.

Рис.8 sp 3 -гибридизация в молекуле воды

В гибридизацию могут включаться не только s- и р-, но и d- и f-орбитали.



При sp 3 d 2 -гибридизации образуется 6 равноценных облаков. Она наблюдается в таких соединениях как 4- , 4- . При этом молекула имеет конфигурацию октаэдра:

Рис. 9 d 2 sp 3 -гибридизация в ионе 4-

Представления о гибридизации дают возможность понять такие особенности строения молекул, которые не могут быть объяснены другим способом.

Гибридизация атомных орбиталей (АО) приводит к смещению электронного облака в направлении образования связи с другими атомами. В результате области перекрывания гибридных орбиталей оказываются больше, чем для чистых орбиталей и прочность связи увеличивается.

Для объяснения фактов, когда атом образует большее число связей, чем число неспаренных электронов в его основном состоянии (например, атом углерода), используется постулат о гибридизации близких по энергии атомных орбиталей. Гибридизация АО происходит при образовании ковалентной связи , если при этом достигается более эффективное перекрывание орбиталей. Гибридизация атома углерода сопровождается его возбуждением и переносом электрона с 2s - на 2р -АО:

Основное и возбужденное состояния атома углерода.

Гибридизация АО - это взаимодействие (смешение) разных по типу, но близких по энергии атомных орбиталей данного атома с образованием гибридных орбиталей одинаковой формы и энергии.

Например, смешение 2s-АО с 2p -АО дает две гибридные 2sp -АО:

АО с большой разницей в энергии (например, 1s и 2р ) в гибридизацию не вступают. В зависимости от числа участвующих в гибридизации p -АО возможны следующие виды гибридизации:

для атомов углерода и азота - sp 3 , sp 2 и sp ;

для атома кислорода - sp 3 , sp 2 ;

для галогенов - sp 3 .

Гибридная АО асимметрична и сильно вытянута в одну сторону от ядра (форма неправильной восьмерки).

В отличие от негибридных s - или р -АО, она имеет одну большую долю, которая хорошо образует химическую связь, и малую долю, которую обычно даже не изображают. Гибридизованные АО при взаимодействии с орбиталями различных типов (s -, р - или гибридными АО) других атомов обычно дают s-МО, т.е. образуют s-связи. Такая связь прочнее связи, образованной электронами негибридных АО, за счет более эффективного перекрывания.

3.3.1. sp 3 -Гибридизация (тетраэдрическая).

Одна s - и три р четыре равноценные по форме и энергии sp 3 -гибридные орбитали.

Орбитальная модель атома в sp 3 -гибридизованном состоянии.

Для атома углерода и других элементов 2-го периода этот процесс происходит по схеме:

2s + 2p x + 2p y + 2p z = 4 (2sp 3)

Схема sp 3 -гибридизации атомных орбиталей.

Оси sp 3 -гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов.



Впервые идею о направленности единиц сродства (валентностей) атома углерода по углам тетраэдра независимо друг от друга выдвинули в 1874 г. Вант-Гофф и Ле Бель.

sp 3 -Орбитали могут образовывать четыре s-связи с другими атомами или заполняться неподеленными парами электронов.

А как наглядно изобразить пространственное строение атома в sp 3 -состоянии на рисунке?

В этом случае sp 3 -гибридные орбитали изображают не электронными облаками, а прямыми линиями или клиньями в зависимости от пространственной ориентации орбитали. Такое схематическое изображение используется при написании стереохимических (пространственных) формул молекул.

Переход от орбитальной модели (а) к пространственной формуле (б).

На примере молекулы метана показаны объемные модели и пространственная (стереохимическая) формула молекулы с sp 3 -углеродным атомом.

Модель молекулы метана

sp 3 -Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 4.

Углерод в sp 3 -гибридном состоянии встречается в простом веществе - алмазе. Это состояние характерно для атомов С, N, O и др., соединенных с другими атомами одинарными связями (sp 3 -атомы выделены красным цветом):

С H 4 , RC H 3 , N H 3 , RN H 2 , H 2 O , RO H, R 2 O ;

а также анионам типа:

R 3 C : - , RO - .

Следствием тетраэдрического строения sp 3 -атома является возможность существования двух оптических стереоизомеров у соединения, содержащего такой атом с четырьмя разными заместителями (Вант-Гофф, Ле Бель, 1874).

3.3.2. sp 2 -Гибридизация (плоскостно-тригональная).

Одна s - и две p -орбитали смешиваются, и образуются три равноценные sp 2 -гибридные орбитали, расположенные в одной плоскости под углом 120° (выделены синим цветом). Они могут образовывать три s-связи. Третья р -орбиталь остается негибридизованной и ориентируется перпендикулярно плоскости расположения гибридных орбиталей. Эта р -АО участвует в образовании p-связи.

Для элементов 2-го периода процесс sp 2 -гибридизации происходит по схеме:

2s + 2p x + 2p y = 3 (2sp 2) 2p z -АО в гибридизации не участвует.

Для изображения пространственного строения атомов в sp 2 -состоянии используются те же приемы, что и в случае sp 3 -атомов:

Переход от орбитальной модели атома в sp 2 -гибридизированном состоянии (а) к пространственной формуле (б). Строение молекул с sp 2 -атомами отражают их модели:

Модели молекулы этилена

sp 2 -Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 3

Углерод в sp 2 -гибридном состоянии образует простое вещество графит. Это состояние характерно для атомов С, N, O и др. с двойной связью (sp 2 -атомы выделены красным цветом):

H 2 C =C H 2 , H 2 C =C HR, R 2 C =N R, R-N =N -R, R 2 C =O , R-N =O ,

а также для катионов типа

R 3 C + и свободных радикалов R 3 C · .

sp 3 -гибридизация характерна для соединений углерода. В результате гибридизации одной s-орбитали и трех

р-орбиталей образуются четыре гибридные sp 3 -орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109,5 о. Гибридизация проявляется в полной равноценности связей атома углерода с другими атомами в соединениях, например, в CH 4 , CCl 4 , C(CH 3) 4 и др.

Рис.5 sp 3 -гибридизация

Если все гибридные орбитали связаны с одинаковыми атомами, то связи ничем не отличаются друг от друга. В других случаях встречаются небольшие отклонения от стандартных валентных углов. Например, в молекуле воды H 2 O кислород - sp 3 -гибридный, находится в центре неправильного тетраэдра, в вершины которого "смотрят" два атома водорода и две неподеленные пары электронов (рис. 2). Форма молекулы угловая, если смотреть по центрам атомов. Валентный угол HОН составляет 105 о, что довольно близко к теоретическому значению 109 о.

Рис.6 sp 3 -гибридизация атомов кислорода и азота в молекулах а) H 2 O и б) NCl 3 .

Если бы не происходило гибридизации (“выравнивания” связей O-H), валентный угол HOH был бы равен 90°, потому что атомы водорода были бы присоединены к двум взаимно перпендикулярным р-орбиталям. В этом случае наш мир выглядел бы, вероятно, совершенно по-другому.

Теория гибридизации объясняет геометрию молекулы аммиака. В результате гибридизации 2s и трёх 2p орбиталей азота образуются четыре гибридные орбитали sp 3 . Конфигурация молекулы представляет из себя искажённый тетраэдр, в котором три гибридных орбитали участвуют в образовании химической связи, а четвёртая с парой электронов – нет. Углы между связями N-H не равны 90 о как в пирамиде, но и не равны 109,5 о, соответствующие тетраэдру.

Рис.7 sp 3 - гибридизация в молекуле аммиака

При взаимодействии аммиака с ионом водорода в результате донорно-акцепторного взаимодействия образуется ион аммония, конфигурация которого представляет собой тетраэдр.

Гибридизация объясняет также отличие угла между связями О-Н в угловой молекуле воды. В результате гибридизации 2s и трёх 2p орбиталей кислорода образуются четыре гибридных орбитали sp 3 , из которых только две участвуют в образовании химической связи, что приводит к искажению угла, соответсвующего тетраэдру.

Рис.8 sp 3 -гибридизация в молекуле воды

В гибридизацию могут включаться не только s- и р-, но и d- и f-орбитали.

При sp 3 d 2 -гибридизации образуется 6 равноценных облаков. Она наблюдается в таких соединениях как 4- , 4- . При этом молекула имеет конфигурацию октаэдра:

Рис. 9 d 2 sp 3 -гибридизация в ионе 4-

Представления о гибридизации дают возможность понять такие особенности строения молекул, которые не могут быть объяснены другим способом.

Гибридизация атомных орбиталей (АО) приводит к смещению электронного облака в направлении образования связи с другими атомами. В результате области перекрывания гибридных орбиталей оказываются больше, чем для чистых орбиталей и прочность связи увеличивается.

Конец работы -

Эта тема принадлежит разделу:

Химическая связь. Типы взаимодействия молекул

Для молекулярных систем как и для многоэлектронных атомов невозможно точное решение уравнения шр дингера приближ нные решения достигаются.. существует два способа объяснения характера ковалентной связи метод валентных.. метод валентных связей основные положения мвс ковалентная связь..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Химическая связь. Типы взаимодействия молекул
Химическая связь – это совокупность сил между атомами, образующая устойчивые системы: молекулы, ионы, радикалы. Ни одно из известных взаимодействий – электрическое, магнитное или гравитаци

Причина образования химической связи – понижение полной энергии системы
Рис.1 Зависимость потенциальной энергии Е системы из двух атомов водорода от межъя

Основные положения МВС
1)Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам. 2)Ковалентная связь тем прочнее, че

Механизмы образования химической связи
В методе валентных связей различают обменный и донорно-акцепторный механизмы образования химической связи. Обменный механизм. К обменному механизму образования химической

Донорно-акцепторный механизм
Донорно-акцепторный механизм – образование ковалентной связи за счёт двухэлектронного облака одного атома(донор) и свободной орбитали другого(акцептор). Примерами образования химической св

Валентность
Валентность- свойство атома данного элемента присоединять или замещать определённое число атомов другого элемента. Мерой валентности является число ковалентных связей, которые образует атом. При эт

Sp- гибридизация
sp–гибридизация имеет место, например, при образовании галогенидов Be, Zn, Co и Hg (II). В валентном состоянии все галогениды металлов содержат на соответствующем энергетическом уровне s и p-неспар

Метод молекулярных орбиталей
Метод ВС широко используется химиками. В рамках этого метода большая и сложная молекула рассматривается как состоящая из отдельных двухцентровых и двухэлектронных связей. Принимается, что электроны

Полярность связи
Между разными атомами чистая ковалентная связь может проявляться, если электроотрицательность (ЭО) атомов одинакова. Такие молекулы электросимметричны, т.е. «центры тяжести» положительных зарядов я

Водородная связь
Водородная связь является особым видом химической связи. Известно, что соединения водорода с сильно электроотрицательными неметаллами, такими как F, О, N, имеют аномально высокие температуры кипени

Энергия связи
Важное значение имеет энергетическая характеристика химической связи. При образовании химической связи общая энергия системы (молекулы) меньше энергии составных частей (атомов), т.е. Е(AB)<Е(А)+

Прочность увеличивается с уменьшением длины связи
Металлическая связь возникает в результате частичной делокализации валентных электронов, которые достаточно свободно движутся в решетке металлов, электростатически взаимодействуя с

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то