Что значит степень числа. Степень и ее свойства

Когда число умножается само на себя , произведение называется степенью .

Так 2.2 = 4, квадрат или вторая степень 2-х
2.2.2 = 8, куб или третья степень.
2.2.2.2 = 16, четвёртая степень.

Также, 10.10 = 100, вторая степень 10.
10.10.10 = 1000, третья степень.
10.10.10.10 = 10000 четвёртая степень.

И a.a = aa, вторая степень a
a.a.a = aaa, третья степень a
a.a.a.a = aaaa, четвёртая степень a

Первоначальное число называется корнем степени этого числа, потому что это число, из которого были созданы степени.

Однако не совсем удобно, особенно в случае высоких степеней, записывать все множители, из которых состоят степени. Поэтому используется сокращенный метод обозначения. Корень степени записывается только один раз, а справа и немного выше возле него, но чуть меньшим шрифтом записывается сколько раз выступает корень как множитель . Это число или буква называется показателем степени или степенью числа. Так, а 2 равно a.a или aa, потому что корень a дважды должен быть умножен сам на себя, чтобы получилось степень aa. Также, a 3 означает aaa, то есть здесь a повторяется три раза как множитель.

Показатель первой степени есть 1, но он обычно не записывается. Так, a 1 записывается как a.

Вы не должны путать степени с коэффициентами . Коэффициент показывает, как часто величина берётся как часть целого. Степень показывает, как часто величина берётся как множитель в произведении.
Так, 4a = a + a + a + a. Но a 4 = a.a.a.a

Схема обозначения со степенями имеет своеобразное преимущество, позволяя нам выражать неизвестную степень. Для этой цели в показатель степени вместо числа записывается буква . В процессе решения задачи, мы можем получить величину, которая, как мы можем знать, есть некоторой степенью другой величины. Но пока что мы не знаем, это квадрат, куб или другая, более высокая степень. Так, в выражении a x , показатель степени означает, что это выражение имеет некоторую степень, хотя не определено какую степень . Так, b m и d n возводятся в степени m и n. Когда показатель степени найден, число подставляется вместо буквы. Так, если m=3, тогда b m = b 3 ; но если m = 5, тогда b m =b 5 .

Метод записи значений с помощью степеней является также большим преимуществом в случае использования выражений . Tак, (a + b + d) 3 есть (a + b + d).(a + b + d).(a + b + d), то есть куб трёхчлена (a + b + d). Но если записать это выражение после возведения в куб, оно будет иметь вид
a 3 + 3a 2 b + 3a 2 d + 3ab 2 + 6abd + 3ad 2 + b 3 + d 3 .

Если мы возьмем ряд степеней, чьи показатели увеличиваются или уменьшаются на 1, мы обнаружим, что произведение увеличивается на общий множитель или уменьшается на общий делитель , и этот множитель или делитель есть первоначальным числом, которое возводится в степень.

Так, в ряде aaaaa, aaaa, aaa, aa, a;
или a 5 , a 4 , a 3 , a 2 , a 1 ;
показатели, если считать справа налево, равны 1, 2, 3, 4, 5; и разница между их значениями равна 1. Если мы начнем справа умножать на a, мы успешно получим несколько значений.

Tак a.a = a 2 , второй член. И a 3 .a = a 4
a 2 .a = a 3 , третий член. a 4 .a = a 5 .

Если мы начнем слева делить на a,
мы получим a 5:a = a 4 и a 3:a = a 2 .
a 4:a = a 3 a 2:a = a 1

Но такой процесс деления может быть продолжен и далее, и мы получаем новый набор значений.

Так, a:a = a/a = 1. (1/a):a = 1/aa
1:a = 1/a (1/aa):a = 1/aaa.

Полный ряд будет: aaaaa, aaaa, aaa, aa, a, 1, 1/a, 1/aa, 1/aaa.

Или a 5 , a 4 , a 3 , a 2 , a, 1, 1/a, 1/a 2 , 1/a 3 .

Здесь значения справа от единицы есть обратными значениям слева от единицы. Поэтому эти степени могут быть названы обратными степенями a. Можно также сказать, что степени слева есть обратными к степеням справа.

Так, 1:(1/a) = 1.(a/1) = a. И 1:(1/a 3) = a 3 .

Тот же самый план записи может применяться к многочленам . Так, для a + b, мы получим множество,
(a + b) 3 , (a + b) 2 , (a + b), 1, 1/(a + b), 1/(a + b) 2 , 1/(a + b) 3 .

Для удобства используется еще одна форма записи обратных степеней.

Согласно этой форме, 1/a или 1/a 1 = a -1 . И 1/aaa или 1/a 3 = a -3 .
1/aa или 1/a 2 = a -2 . 1/aaaa или 1/a 4 = a -4 .

А чтобы сделать с показателями законченный ряд с 1 как общая разница, a/a или 1, рассматривается как такое, что не имеет степени и записывается как a 0 .

Тогда, учитывая прямые и обратные степени
вместо aaaa, aaa, aa, a, a/a, 1/a, 1/aa, 1/aaa, 1/aaaa
можно записать a 4 , a 3 , a 2 , a 1 , a 0 , a -1 , a -2 , a -3 , a -4 .
Или a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .

А ряд только отдельно взятых степеней будет иметь вид:
+4,+3,+2,+1,0,-1,-2,-3,-4.

Корень степени может выражен более чем одной буквой.

Так, aa.aa или (aa) 2 есть второй степенью aa.
И aa.aa.aa или (aa) 3 есть третьей степенью aa.

Все степени цифры 1 одинаковы: 1.1 или 1.1.1. будет равно 1.

Возведение в степень есть нахождение значения любого числа путем умножения этого числа само на себя. Правило возведения в степень:

Умножайте величину саму на себя столько раз, сколько указано в степени числа.

Это правило является общим для всех примеров, которые могут возникнуть в процессе возведения в степень. Но будет правильно дать объяснение, каким образом оно применяется к частным случаям.

Если в степень возводится только один член, то он умножается сам на себя столько раз, сколько указывает показатель степени.

Четвертая степень a есть a 4 или aaaa. (Art. 195.)
Шестая степень y есть y 6 или yyyyyy.
N-ая степень x есть x n или xxx..... n раз повторенное.

Если необходимо возвести в степень выражение из нескольких членов, применяется принцип, согласно которому степень произведения нескольких множителей равна произведению этих множителей, возведенных в степень.

Tак (ay) 2 =a 2 y 2 ; (ay) 2 = ay.ay.
Но ay.ay = ayay = aayy = a 2 y 2 .
Так, (bmx) 3 = bmx.bmx.bmx = bbbmmmxxx = b 3 m 3 x 3 .

Поэтому, в нахождении степени произведения мы можем или оперировать со всем произведением сразу, или мы можем оперировать с каждым множителем отдельно, а потом умножить их значения со степенями.

Пример 1. Четвертая степень dhy есть (dhy) 4 , или d 4 h 4 y 4 .

Пример 2. Третья степень 4b, есть (4b) 3 , или 4 3 b 3 , или 64b 3 .

Пример 3. N-ая степень 6ad есть (6ad) n или 6 n a n d n .

Пример 4. Третья степень 3m.2y есть (3m.2y) 3 , или 27m 3 .8y 3 .

Степень двочлена, состоящего из членов, соединенных знаком + и -, вычисляется умножением его членов. Tак,

(a + b) 1 = a + b, первая степень.
(a + b) 1 = a 2 + 2ab + b 2 , вторая степень (a + b).
(a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 , третья степень.
(a + b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4 , четвертая степень.

Квадрат a - b, есть a 2 - 2ab + b 2 .

Квадрат a + b + h есть a 2 + 2ab + 2ah + b 2 + 2bh + h 2

Упражнение 1. Найдите куб a + 2d + 3

Упражнение 2. Найдите четвертую степень b + 2.

Упражнение 3. Найдите пятую степень x + 1.

Упражнение 4. Найдите шестую степень 1 - b.

Квадраты суммы суммы и разницы двочленов встречаются так часто в алгебре, что необходимо их знать очень хорошо.

Если мы умножаем a + h само на себя или a - h само на себя,
мы получаем: (a + h)(a + h) = a 2 + 2ah + h 2 также, (a - h)(a - h) = a 2 - 2ah + h 2 .

Отсюда видно, что в каждом случае, первый и последний члены есть квадраты a и h, а средний член есть удвоеннное произведение a на h. Отсюда, квадрат суммы и разницы двочленов может быть найден, используя следующее правило.

Квадрат двочлена, оба члена которых положительны, равен квадрату первого члена + удвоенное произведение обоих членов, + квадрат последнего члена.

Квадрат разницы двочленов равен квадрату первого члена минус удвоенное произведение обоих членов плюс квадрат второго члена.

Пример 1. Квадрат 2a + b, есть 4a 2 + 4ab + b 2 .

Пример 2. Квадрат ab + cd, есть a 2 b 2 + 2abcd + c 2 d 2 .

Пример 3. Квадрат 3d - h, есть 9d 2 + 6dh + h 2 .

Пример 4. Квадрат a - 1 есть a 2 - 2a + 1.

Чтобы узнать метод нахождения более высоких степеней двочленов, смотрите следующие разделы.

Во многих случаях является эффективным записывать степени без умножения.

Так, квадрат a + b, есть (a + b) 2 .
N-ая степень bc + 8 + x есть (bc + 8 + x) n

В таких случаях, скобки охватывают все члены под степенью.

Но если корень степени состоит из нескольких множителей , скобки могут охватывать всё выражение, или могут применяться отдельно к множителям в зависимости от удобства.

Так, квадрат (a + b)(c + d) есть или [(a + b).(c + d)] 2 или (a + b) 2 .(c + d) 2 .

Для первого из этих выражений результатом есть квадрат произведения двух множителей, а для второго - произведением их квадратов. Но они равны друг другу.

Куб a.(b + d), есть 3 , или a 3 .(b + d) 3 .

Необходимо также учитывать и знак перед вовлеченными членами. Очень важно помнить, что когда корень степени положительный, все его положительные степени также положительны. Но когда корень отрицательный, значения с нечетными степенями отрицательны, в то время как значения чётных степеней есть положительными.

Вторая степень (- a) есть +a 2
Третья степень (-a) есть -a 3
Четвёртая степень (-a) есть +a 4
Пятая степень (-a) есть -a 5

Отсюда любая нечётная степень имеет тот же самый знак, что и число. Но чётная степень есть положительна вне зависимости от того, имеет число отрицательный или положительный знак.
Так, +a.+a = +a 2
И -a.-a = +a 2

Величина, уже возвёденная в степень, еще раз возводится в степень путем умножения показателей степеней.

Третья степень a 2 есть a 2.3 = a 6 .

Для a 2 = aa; куб aa есть aa.aa.aa = aaaaaa = a 6 ; что есть шестой степенью a, но третьей степенью a 2 .

Четвертая степень a 3 b 2 есть a 3.4 b 2.4 = a 12 b 8

Третья степень 4a 2 x есть 64a 6 x 3 .

Пятая степень (a + b) 2 есть (a + b) 10 .

N-ая степень a 3 есть a 3n

N-ая степень (x - y) m есть (x - y) mn

(a 3 .b 3) 2 = a 6 .b 6

(a 3 b 2 h 4) 3 = a 9 b 6 h 12

Правило одинаково применяется к отрицательным степеням.

Пример 1. Третья степень a -2 есть a -3.3 =a -6 .

Для a -2 = 1/aa, и третья степень этого
(1/aa).(1/aa).(1/aa) = 1/aaaaaa = 1/a 6 = a -6

Четвертая степень a 2 b -3 есть a 8 b -12 или a 8 /b 12 .

Квадрат b 3 x -1 , есть b 6 x -2 .

N-ая cтепень ax -m есть x -mn или 1/x .

Однако, здесь надо помнить, что если знак, предшествующий степени есть "-", то он должен быть изменен на "+" всегда, когда степень есть четным числом.

Пример 1. Квадрат -a 3 есть +a 6 . Квадрат -a 3 есть -a 3 .-a 3 , которое, согласно правилам знаков при умножении, есть +a 6 .

2. Но куб -a 3 есть -a 9 . Для -a 3 .-a 3 .-a 3 = -a 9 .

3. N-ая степень -a 3 есть a 3n .

Здесь результат может быть положительным или отрицательным в зависимости от того, какое есть n - чётное или нечётное.

Если дробь возводится в степень, то возводятся в степень числитель и знаменатель.

Квадрат a/b есть a 2 /b 2 . Согласно правилу умножению дробей,
(a/b)(a/b) = aa/bb = a 2 b 2

Вторая, третья и n-ая степени 1/a есть 1/a 2 , 1/a 3 и 1/a n .

Примеры двочленов , в которых один из членов является дробью.

1. Найдите квадрат x + 1/2 и x - 1/2.
(x + 1/2) 2 = x 2 + 2.x.(1/2) + 1/2 2 = x 2 + x + 1/4
(x - 1/2) 2 = x 2 - 2.x.(1/2) + 1/2 2 = x 2 - x + 1/4

2. Квадрат a + 2/3 есть a 2 + 4a/3 + 4/9.

3. Квадрат x + b/2 = x 2 + bx + b 2 /4.

4 Квадрат x - b/m есть x 2 - 2bx/m + b 2 /m 2 .

Ранее было показано, что дробный коэффициент может быть перемещен из числителя в знаменатель или из знаментеля в числитель. Используя схему записи обратных степеней, видно, что любой множитель также может быть перемещен, если будет изменен знак степени .

Так, в дроби ax -2 /y, мы можем переместить x из числителя в знаменатель.
Тогда ax -2 /y = (a/y).x -2 = (a/y).(1/x 2 = a/yx 2 .

В дроби a/by 3 мы можем переместить у из знаменателя в числитель.
Тогда a/by 2 = (a/b).(1/y 3) = (a/b).y -3 = ay -3 /b.

Таким же образом мы можем переместить множитель, который имеет положительный показатель степени в числитель или множитель с отрицательной степенью в знаменатель.

Так, ax 3 /b = a/bx -3 . Для x 3 обратным есть x -3 , что есть x 3 = 1/x -3 .

Следовательно, знаменатель любой дроби может быть полностью удален, или числитель может быть сокращен до единицы, что не изменит значение выражения.

Так, a/b = 1/ba -1 , or ab -1 .

Степень обобщается также на случай произвольного (рационального или иррационального, а также комплексного) показателя.

Большой Энциклопедический словарь . 2000 .

Синонимы :

Смотреть что такое "СТЕПЕНЬ" в других словарях:

    Степени, мн. степени, степеней, жен. 1. Сравнительная величина, сравнительное количество, сравнительный размер, сравнительное качество чего н. Степень культурности. Высокая степень мастерства. Степень родства (количество рождений, связывающих… … Толковый словарь Ушакова

    Жен. ступень, ряд, разряд, порядок, от дел по качеству, достоинству; место и самое собранье однородного, равного во всем, где полагается лествичный порядок, восходящий и нисходящий. Царство ископаемых, растений и животных, это три степени… … Толковый словарь Даля

    Ступень, разряд, ряд, стадия, фазис, высота, точка, градус, уровень, ординар, достоинство, ранг, чин. Последовательность степеней лестница, иерархия. Образовательный, имущественный ценз. Дело вступило в новый фазис. Чахотка в последнем градусе … Словарь синонимов

    СТЕПЕНЬ, и, мн. и, ей, жен. 1. Мера, сравнительная величина чего н. С. подготовленности. С. загрязнения. 2. То же, что звание (в 1 знач.), а также (устар.) ранг, чин. Учёная с. доктора наук. Достичь высоких степеней. 3. обычно с поряд. числ.… … Толковый словарь Ожегова

    степень - степень диссоциации степень окисления степень поглощения … Химические термины

    - (power) Показатель, указывающий определенное количество умножений числа самого на себя, n я степень х означает х; умноженное само на себя n раз; n является показателем степени. Степени могут быть положительными и отрицательными: х n означает, что … Экономический словарь

    СТЕПЕНЬ, в математике, результат умножения числа или ПЕРЕМЕННОЙ на себя определенное число раз. Так, а2 (= а 3 а) является второй степенью а; а3 третьей степенью; а4 четвертой и т.д. Умножаемое число (в данном примере а) называется основанием… … Научно-технический энциклопедический словарь

    степень - степень, мн. степени, род. степеней (неправильно степеня) … Словарь трудностей произношения и ударения в современном русском языке

    СТЕПЕНЬ - (1) диссоциации величина, характеризующая состояние равновесия реакции (см.) в однородных (газообразных и жидких) системах; выражается отношением числа молекул, распавшихся (диссоциировавших) на своп составные части (атомы, молекулы, ноны), к… … Большая политехническая энциклопедия

    Термин «степень» может означать: В математике Возведение в степень Декартова степень Корень n й степени Степень множества Степень многочлена Степень дифференциального уравнения Степень отображения Степень точки в геометрии Степени тысячи… … Википедия

Книги

  • Степень доверия , Владимир Войнович , "Степень доверия" - первая историческая повесть В. Войновича. Она посвящена замечательной революционерке-народоволке Вере Николаевне Фигнер. Автор сосредоточиваетвнимание на узловых моментах… Серия: Пламенные революционеры Издатель: Издательство политической литературы ,
  • Степень готовности системы управления бизнес-процессами к внедрению информационных технологий (методика оценки) , А. В. Костров , В статье поставлена задача оценки степени готовности системы управления бизнес-процессами к информатизации. Предложено отображать вербальные описания стадий зрелости множеством частных… Серия: Прикладная информатика. Научные статьи Издатель:

Степень числа

Итак, разберёмся, что такое степень числа. Для записи произведения числа самого на себя несколько раз применяют сокращённое обозначение. Так, вместо произведения шести одинаковых множителей 4 . 4 . 4 . 4 . 4 . 4 пишут 4 6 и произносят «четыре в шестой степени».
4 . 4 . 4 . 4 . 4 . 4 = 4 6

Выражение 4 6 называют степенью числа, где:
. 4 - основание степени;
. 6 - показатель степени.

В общем виде степень с основанием "a" и показателем "n" записывается с помощью выражения:


  • Степенью числа "a" с натуральным показателем "n", бóльшим 1, называется произведение "n" одинаковых множителей, каждый из которых равен числу "a".


Запись a n читается так: «а в степени n» или «n-ая степень числа a».

Исключение составляют записи:
. a 2 - её можно произносить как «а в квадрате»;
. a 3 - её можно произносить как «а в кубе».

  • Степенью числа «а» с показателем n = 1 является само это число:
  • a 1 = a
  • Любое число в нулевой степени равно единице.
  • a 0 = 1
  • Ноль в любой натуральной степени равен нулю.
  • 0 n = 0
  • Единица в любой степени равна 1.
  • 1 n = 1

Выражение 0 0 (ноль в нулевой степени) считают лишённым смыслом.
. (-32) 0 = 1
. 0 234 = 0
. 1 4 = 1
При решении примеров нужно помнить, что возведением в степень называется нахождение значения степени.

Пример. Возвести в степень.
. 5 3 = 5 . 5 . 5 = 125
. 2.5 2 = 2.5 . 2.5 = 6.25
. (3 ) 4 = 3. 3. 3. 3 = 81
4 4 4 4 4 256

Возведение в степень отрицательного числа
Основание степени (число, которое возводят в степень) может быть любым числом - положительным, отрицательным или нулём.

  • При возведении в степень положительного числа получается положительное число.

При возведении нуля в натуральную степень получается ноль.
При возведении в степень отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.

Рассмотрим примеры возведения в степень отрицательных чисел.


Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень, то получается отрицательное число. Так как произведение нечётного количество отрицательных сомножителей отрицательно.

Если же отрицательное число возводится в чётную степень, то получается положительное число. Так как произведение чётного количество отрицательных сомножителей положительно.

Отрицательное число, возведённое в чётную степень, есть число положительное.

  • Отрицательное число, возведённое в нечётную степень, - число отрицательное.
  • Квадрат любого числа есть положительное число или нуль, то есть:
  • a 2 ≥ 0 при любом a.

2 . (- 3) 2 = 2 . (- 3) . (- 3) = 2 . 9 = 18
. - 5 . (- 2) 3 = - 5 . (- 8) = 40

Обратите внимание!
При решении примеров на возведение в степень часто делают ошибки, забывая, что записи (- 5) 4 и -5 4 это разные выражения. Результаты возведения в степень данных выражений будут разные.

Вычислить (- 5) 4 означает найти значение четвёртой степени отрицательного числа.
(- 5) 4 = (- 5) . (- 5) . (- 5) . (- 5) = 625

В то время как найти -5 4 означает, что пример нужно решать в 2 действия:
1. Возвести в четвёртую степень положительное число 5.
5 4 = 5 . 5 . 5 . 5 = 625
2. Поставить перед полученным результатом знак «минус» (то есть выполнить действие вычитание).
-5 4 = - 625
Пример. Вычислить: - 6 2 - (- 1) 4
- 6 2 - (- 1) 4 = - 37

1. 6 2 = 6 . 6 = 36
2. -6 2 = - 36
3. (- 1) 4 = (- 1) . (- 1) . (- 1) . (- 1) = 1
4. - (- 1) 4 = - 1
5. - 36 - 1 = - 37

Порядок действий в примерах со степенями
Вычисление значения называется действием возведения в степень. Это действие третьей ступени.

  • В выражениях со степенями, не содержащими скобки, сначала выполняют возведение в степень, затем умножение и деление, а в конце сложение и вычитание.
  • Если в выражении есть скобки, то сначала в указанном выше порядке выполняют действия в скобках, а потом оставшиеся действия в том же порядке слева направо.

Пример. Вычислить:


Cвойства степени

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.
Свойство № 1
Произведение степеней

  • При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
  • a m . a n = a m+n , где a - любое число, а m, n - любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.
Примеры.
. Упростить выражение.
b . b 2 . b 3 . b 4 . b 5 = b 1+2+3+4+5 = b 15


6 15 . 36 = 6 15 . 6 2 = 6 15+2 = 6 17

Представить в виде степени.
(0,8) 3 . (0,8) 12 = (0,8) 3+12 = (0,8) 15

  • Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями. Оно не относится к их сложению.
  • Нельзя заменять сумму (3 3 + 3 2) на 3 3 . Это понятно, если посчитать 3 3 = 27 и 3 2 = 9; 27 + 9 = 36, а 3 5 = 243

Свойство № 2
Частное степеней

  • При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.
  • a m . a n = a m-n , где a - любое число, не равное нулю, а m, n - любые натуральные числа такие, что m > n.

Примеры.
. Записать частное в виде степени
(2b) 5: (2b) 3 = (2b) 5-3 = (2b) 2

Пример. Решить уравнение. Используем свойство частного степеней.
3 8: t = 3 4

t = 3 8: 3 4

t = 3 8-4

t = 3 4

Ответ: t = 3 4 = 81

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.
. Пример. Упростить выражение.
4 5m+6 . 4 m+2: 4 4m+3 = 4 5m+6+m+2: 4 4m + 3 = 4 6m + 8 - 4m - 3 = 4 2m + 5


Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.
Нельзя заменять разность (4 3 - 4 2) на 4 1 . Это понятно, если посчитать 4 3 = 64 и 4 2 = 16; 64 - 16 = 48, а 4 1 = 4
Будьте внимательны!

Свойство № 3
Возведение степени в степень

  • При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.
  • (a n) m = a n . m , где a - любое число, а m, n - любые натуральные числа.

Пример.
(a 4) 6 = a 4 . 6 = a 24
. Пример. Представить 3 20 в виде степени с основанием 32.
По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:


Свойства 4
Степень произведения

  • При возведении степени в степень произведения в эту степень возводится каждый множитель и результаты перемножаются.
  • (a . b) n = a n . b n , где a, b - любые рациональные числа; n - любое натуральное число.

Пример 1.

(6 . a 2 . b 3 . c) 2 = 6 2 . a 2 . 2 . b 3 . 2 . с 1 . 2 = 36 a 4 . b 6 . с 2

Пример 2.

(- x 2 . y) 6 = ((- 1) 6 . x 2 . 6 . y 1 . 6) = x 12 . y 6

Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.
(a n . b n)= (a . b) n

То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.
. Пример. Вычислить.

2 4 . 5 4 = (2 . 5) 4 = 10 4 = 10 000

Пример. Вычислить.

0,5 16 . 2 16 = (0,5 . 2) 16 = 1

В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.
Например, 4 5 . 3 2 = 4 3 . 4 2 . 3 2 = 4 3 . (4 . 3) 2 = 64 . 12 2 = 64 . 144 = 9216

Пример возведения в степень десятичной дроби.
4 21 . (-0,25) 20 = 4 . 4 20 . (-0,25) 20 = 4 . (4 . (-0,25)) 20 = 4 . (- 1) 20 = 4 . 1 = 4

Свойства 5
Степень частного (дроби)

  • Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.
  • (a: b) n = a n: b n , где a, b - любые рациональные числа, b ≠ 0, n - любое натуральное число.

Пример. Представить выражение в виде частного степеней.
(5: 3) 12 = 5 12: 3 12

Возведение в степень дроби

  • При возведении в степень дроби нужно возвести в степень и числитель, и знаменатель.


Примеры возведения в степень дроби.

Как возвести в степень смешанное число
Чтобы возвести в степень смешанное число, сначала избавляемся от целой части, превращая смешанное число в неправильную дробь. После этого возводим в степень и числитель, и знаменатель.
Пример.

Формулу возведения в степень дроби применяют как слева направо, так и справа налево, то есть, чтобы разделить друг на друга степени одинаковыми показателями, можно разделить одно основание на другое, а показатель степени оставить неизменным.

Пример. Найти значение выражения рациональным способом.

Свойства степеней


В этой статье мы разберемся, что такое степень числа . Здесь мы дадим определения степени числа, при этом подробно рассмотрим все возможные показатели степени, начиная с натурального показателя, заканчивая иррациональным. В материале Вы найдете массу примеров степеней, покрывающих все возникающие тонкости.

Навигация по странице.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим . Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для a , которое будем называть основанием степени , и n , которое будем называть показателем степени . Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n - это выражение вида a n , значение которого равно произведению n множителей, каждый из которых равен a , то есть, .
В частности, степенью числа a с показателем 1 называется само число a , то есть, a 1 =a .

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи a n таков: «a в степени n ». В некоторых случаях также допустимы такие варианты: «a в n -ой степени» и «n -ая степень числа a ». Для примера возьмем степень 8 12 , это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа , например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа , к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».

Пришло время привести примеры степеней с натуральными показателями . Начнем со степени 5 7 , здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: 4,32 является основанием, а натуральное число 9 – показателем степени (4,32) 9 .

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2) 3 и −2 3 . Выражение (−2) 3 – это степень −2 с натуральным показателем 3, а выражение −2 3 (его можно записать как −(2 3) ) соответствует числу, значению степени 2 3 .

Заметим, что встречается обозначение степени числа a с показателем n вида a^n . При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 4 9 . А вот еще примеры записи степеней при помощи символа «^ »: 14^(21) , (−2,1)^(155) . В дальнейшем мы преимущественно будем пользоваться обозначением степени вида a n .

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к .

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , где m – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили , то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данных m , n и a выражение имеет смысл, то степенью числа a с дробным показателем m/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

    Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

    Определение.

    Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .

    Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

    Определение.

    Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
    При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

    Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условие a≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

    Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является , считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

    При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

    Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

    Определение.

    Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

    Поясним, зачем степень с сократимым дробным показателем предварительно заменяется степенью с несократимым показателем. Если бы мы просто определили степень как , и не оговорились о несократимости дроби m/n , то мы бы столкнулись с ситуациями, подобными следующей: так как 6/10=3/5 , то должно выполняться равенство , но , а .

можно найти с помощью умножения. Например: 5+5+5+5+5+5=5х6. О таком выражении говорят, что сумму равных слагаемых свернули в произведение. И наоборот, если читать это равенство справа налево, получаем, что мы развернули сумму равных слагаемых. Аналогично можно сворачивать произведение нескольких равных множителей 5х5х5х5х5х5=5 6 .

То есть вместо умножения шести одинаковых множителей 5х5х5х5х5х5 пишут 5 6 и говорят «пять в шестой степени».

Выражение 5 6 - это степенью числа, где:

5 - основание степени;

6 - показатель степени.

Действия, с помощью которых произведение равных множителей сворачивают в степень, называют возведением в степень.

В общем виде степень с основанием "a" и показателем "n" записывается так

Возвести число a в степень n - значит найти произведение n множителей, каждый из которых равен а

Если основание степени «а» равно 1, то значение степени при любом натуральном n будет равно 1. Например, 1 5 =1, 1 256 =1

Если возвести число «а» возвести в первую степень , то получим само число a: a 1 = a

Если возвести любое число в нулевой степень , то в результате вычислений получим один. a 0 = 1

Особыми считают вторую и третью степень числа. Для них придумали названия: вторую степень называют квадратом числа , третью - кубом этого числа.

В степень можно возводить любое число - положительное, отрицательное или нуль. При этом не пользуются следующими правилами:

При нахождении степени положительного числа получается положительное число .

При вычислениях нуля в натуральной степени получаем ноль.

х m · х n = х m + n

например: 7 1.7 · 7 - 0.9 = 7 1.7+(- 0.9) = 7 1.7 - 0.9 = 7 0.8

Чтобы разделить степени с одинаковыми основаниями основание не меняем, а показатели степеней вычитаем :

х m / х n = х m — n , где, m > n,

например: 13 3.8 / 13 -0.2 = 13 (3.8 -0.2) = 13 3.6

При расчетах возведения степени в степень основание не меняем, а показатели степеней умножаем друг на друга.

(у m ) n = у m · n

например: (2 3) 2 = 2 3·2 = 2 6

(х · у) n = х n · у m ,

например:(2·3) 3 = 2 n · 3 m ,

При выполнении расчетов по возведению в степень дроби мы в данную степень возводим числитель и знаменатель дроби

(х / у) n = х n / у n

например: (2 / 5) 3 = (2 / 5) · (2 / 5) · (2 / 5) = 2 3 / 5 3 .

Последовательность выполнения расчетов при работе с выражениями содержащими степень.

При выполнении расчетов выражений без скобок, но содержащих степени, в первую очередь производят возведение в степень, потом действия умножение и деление, и лишь потом операции сложения и вычитания.

Если необходимо вычислить выражение содержащие скобки, то сначала в указанном выше порядке делаем вычисления в скобках, а потом оставшиеся действия в том же порядке слева направо.

Очень широко в практических вычислениях для упрощения расчетов используют готовые таблицы степеней.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то