Десятичные дроби и действия с ними. Деление и умножение десятичных дробей

Десятичная дробь используется, когда нужно выполнять действия с нецелыми числами. Это может показаться нерациональным. Но такой вид чисел существенно облегчает математические операции, которые с ними необходимо выполнять. Это понимание приходит со временем, когда их запись становится привычной, а прочтение не вызывает трудностей, и освоены правила десятичных дробей. Тем более что все действия повторяют уже известные, которые усвоены с натуральными числами. Только нужно запомнить некоторые особенности.

Определение десятичной дроби

Десятичная дробь — это особое представление нецелого числа со знаменателем, который делится на 10, а ответ получается в виде единицы и, возможно, нулей. Другими словами, если в знаменателе 10, 100, 1000 и так далее, то удобнее переписать число с использованием запятой. Тогда до нее будет расположена целая часть, а потом - дробная. Причем запись второй половины числа будет зависеть от знаменателя. Количество цифр, которые находятся в дробной части, должно быть равно разряду знаменателя.

Проиллюстрировать вышесказанное можно этими числами:

9/10=0,9; 178/10000=0,0178; 3,05; 56 003,7006.

Причины, по которым понадобилось применение десятичных дробей

Математикам потребовались десятичные дроби по нескольким основаниям:

    Упрощение записи. Такая дробь расположена вдоль одной линии без черточки между знаменателем и числителем, при этом наглядность не страдает.

    Простота в сравнении. Достаточно просто соотнести цифры, находящиеся в одинаковых позициях, в то время как с обыкновенными дробями пришлось бы приводить их к общему знаменателю.

    Упрощение вычислений.

    Калькуляторы не рассчитаны на введение обыкновенных дробей, они для всех операций используют десятичную запись чисел.

Как правильно прочитать такие числа?

Ответ прост: так же, как обыкновенное смешанное число со знаменателем, кратным 10. Исключение составляют только дроби без целого значения, тогда при чтении нужно произносить «ноль целых».

Например, 45/1000 нужно произнести как сорок пять тысячных , в то же время 0,045 будет звучать как ноль целых сорок пять тысячных .

Смешанное число с целой частью равной 7 и дробью 17/100, что запишется как 7,17, в обоих случаях будет прочитано как семь целых семнадцать сотых .

Роль разрядов в записи дробей

Верно отметить разряд - это то, что требует математика. Десятичные дроби и их значение могут существенно измениться, если записать цифру не в том месте. Впрочем, это было справедливо и раньше.

Для прочтения разрядов целой части десятичной дроби нужно просто воспользоваться правилами, известными для натуральных чисел. А в правой части они зеркально отражаются и по-другому читаются. Если в целой части звучало "десятки", то после запятой это будут уже "десятые".

Наглядно это можно увидеть в этой таблице.

Таблица разрядов десятичной дроби
класс тысячи единицы , дробная часть
разряд сот. дес. ед. сот. дес. ед. десятая сотая тысячная десятитысячная

Как правильно записать смешанное число десятичной дробью?

Если в знаменателе стоит число, равное 10 или 100, и прочие, то вопрос о том, как дробь перевести в десятичную, несложен. Для этого достаточно по-другому переписать все ее составные части. В этом помогут такие пункты:

    немного в стороне написать числитель дроби, в этот момент десятичная запятая располагается справа, после последней цифры;

    переместить запятую влево, здесь самое главное - правильно сосчитать цифры — передвинуть ее нужно на столько позиций, сколько нолей в знаменателе;

    если их не хватает, то на пустых позициях должны оказаться нули;

    нули, которые были в конце числителя, теперь не нужны, и их можно зачеркнуть;

    перед запятой приписать целую часть, если ее не было, то здесь тоже окажется нуль.

Внимание. Нельзя зачеркивать нули, которые оказались окружены другими цифрами.

О том, как быть в ситуации, когда в знаменателе число не только из единицы и нулей, как дробь переводить в десятичную, можно прочитать чуть ниже. Это важная информация, с которой обязательно стоит ознакомиться.

Как дробь перевести в десятичную, если знаменатель - произвольное число?

Здесь возможны два варианта:

    Когда знаменатель можно представить в виде числа, которое равно десяти в любой степени.

    Если такую операцию проделать нельзя.

Как это проверить? Нужно разложить знаменатель на множители. Если в произведении присутствуют только 2 и 5, то все хорошо, и дробь легко преобразуется в конечную десятичную. В противном случае, если появляются 3, 7 и другие простые числа, то результат будет бесконечным. Такую десятичную дробь для удобства использования в математических операциях принято округлять. Об этом будет речь немного ниже.

Изучает, как получаются такие десятичные дроби, 5 класс. Примеры здесь будут очень кстати.

Пусть в знаменателях находятся числа: 40, 24 и 75. Разложение на простые множители для них будет такое:

  • 40=2·2·2·5;
  • 24=2·2·2·3;
  • 75=5·5·3.

В этих примерах только первая дробь может быть представлена в виде конечной.

Алгоритм перевода обыкновенной дроби в конечную десятичную

    Проверить разложение знаменателя на простые множители и убедиться в том, что оно будет состоять из 2 и 5.

    Добавить к этим числам столько 2 и 5, чтобы их стало равное количество. Они дадут значение дополнительного множителя.

    Произвести умножение знаменателя и числителя на это число. В результате получится обыкновенная дробь, под чертой у которой стоит 10 в некоторой степени.

Если в задаче эти действия выполняются со смешанным числом, то его сначала нужно представить в виде неправильной дроби. А уже потом действовать по описанному сценарию.

Представление обыкновенной дроби в виде округленной десятичной

Этот способ того, как дробь переводить в десятичную, кому-то покажется даже проще. Потому что в нем нет большого количества действий. Нужно только разделить значение числителя на знаменатель.

К любому числу с десятичной частью справа от запятой можно приписать бесконечное количество нулей. Этим свойством и нужно воспользоваться.

Сначала записать целую часть и поставить после нее запятую. Если дробь правильная, то написать ноль.

Потом полагается выполнить деление числителя на знаменатель. Так, чтобы количество цифр у них было одинаковым. То есть приписать справа у числителя нужное количество нолей.

Выполнять деление в столбик до тех пор, пока не будет набрано нужное количество цифр. Например, если округлить нужно будет до сотых, то в ответе их должно быть 3. В общем, цифр должно быть на одну больше, чем нужно получить в итоге.

Записать промежуточный ответ после запятой и округлить по правилам. Если последняя цифра - от 0 до 4, то ее нужно просто отбросить. А когда она равна 5-9, то стоящую перед ней нужно увеличить на единицу, отбросив последнюю.

Возврат от десятичной дроби к обыкновенной

В математике встречаются задачи, когда десятичные дроби удобнее представить в виде обыкновенных, в которых есть числитель со знаменателем. Можно вздохнуть с облегчением: эта операция возможна всегда.

Для этой процедуры нужно сделать следующее:

    записать целую часть, если она равна нулю, то ничего писать не надо;

    провести дробную черту;

    над ней записать цифры из правой части, если первыми идут нули, то их нужно зачеркнуть;

    под чертой написать единицу с таким количеством нолей, сколько цифр стоит после запятой в первоначальной дроби.

    Это все, что нужно сделать, чтобы перевести десятичную дробь в обыкновенную.

    Что можно делать с десятичными дробями?

    В математике это будут определенные действия с десятичными дробями, которые ранее выполнялись для других чисел.

    Ими являются:

      сравнение;

      сложение и вычитание;

      умножение и деление.

    Первое действие, сравнение, похоже на то, как это делалось для натуральных чисел. Чтобы определить, какое больше, нужно сравнивать разряды целой части. Если они окажутся равными, то переходят к дробной и так же по разрядам сравнивают их. То число, где окажется большая цифра в старшем разряде, и будет ответом.

    Сложение и вычитание десятичных дробей

    Это, пожалуй, самые простые действия. Потому что выполняются по правилам для натуральных чисел.

    Так, чтобы выполнить сложение десятичных дробей, их нужно записать друг под другом, разместив запятые в столбик. При такой записи слева от запятых оказываются целые части, а справа — дробные. И теперь нужно сложить цифры поразрядно, как это делается с натуральными числами, снеся вниз запятую. Начинать сложение нужно с самого маленького разряда дробной части числа. Если в правой половине не хватает цифр, то дописывают нули.

    При вычитании действуют так же. И здесь действует правило, которое описывает возможность занять единицу у старшего разряда. Если в уменьшаемой дроби после запятой меньше цифр, чем у вычитаемого, то в ней просто приписывают нули.

    Немного сложнее обстоит дело с заданиями, где нужно выполнить умножение и деление десятичных дробей.

    Как умножить десятичную дробь в разных примерах?

    Правило, по которому производится умножение десятичных дробей на натуральное число, такое:

      записать их в столбик, не обращая внимания на запятую;

      перемножить, как если бы они были натуральными;

      отделить запятой столько цифр, сколько их было в дробной части исходного числа.

    Частным случаем является пример, в котором натуральное число равно 10 в любой степени. Тогда для получения ответа нужно просто передвинуть запятую вправо на столько позиций, сколько нулей в другом множителе. Иными словами, при умножении на 10 запятая сдвигается на одну цифру, на 100 - их будет уже две, и так далее. Если цифр в дробной части не хватает, то нужно записать на пустых позициях нули.

    Правило, которым пользуются, когда в задании нужно произвести умножение десятичных дробей на другое такое же число:

      записать их друг под другом, не обращая внимания на запятые;

      умножить, как если бы они были натуральными;

      отделить запятой столько цифр, сколько их было в дробных частях обеих исходных дробях вместе.

    Частным случаем выделяются примеры, в которых один из множителей равен 0,1 или 0,01 и далее. В них нужно выполнить перемещение запятой влево на количество цифр в представленных множителях. То есть если умножается на 0,1, то запятая сдвигается на одну позицию.

    Как разделить десятичную дробь в разных заданиях?

    Деление десятичных дробей на натуральное число выполняется по такому правилу:

      записать их для деления в столбик, как если бы они были натуральными;

      делить по привычному правилу до тех пор, пока не закончится целая часть;

      поставить в ответ запятую;

      продолжить деление дробной составляющей до получения в остатке нуля;

      если нужно, то можно приписать нужное количество нулей.

    Если целая часть равна нулю, то и в ответе ее тоже не будет.

    Отдельно стоит деление на числа, равные десятке, сотне и так далее. В таких задачах нужно передвинуть запятую влево на количество нулей в делителе. Бывает, что цифр в целой части не хватает, тогда вместо них используют нули. Можно заметить, что эта операция подобна умножению на 0,1 и подобным ей числам.

    Чтобы выполнить деление десятичных дробей, нужно воспользоваться этим правилом:

      превратить делитель в натуральное число, а для этого перенести в нем запятую вправо до конца;

      выполнить перемещение запятой и в делимом на такое же число цифр;

      действовать по предыдущему сценарию.

    Выделяется деление на 0,1; 0,01 и прочие подобные числа. В таких примерах запятая сдвигается вправо на число цифр в дробной части. Если они закончились, то нужно приписать недостающее количество нулей. Стоит отметить, что это действие повторяет деление на 10 и подобные ему числа.

    Заключение: все дело в практике

    Ничто в учебе не дается легко и без усилий. Для надежного освоения нового материала требуются время и тренировка. Математика не исключение.

    Чтобы тема про десятичные дроби не вызывала затруднений, нужно решать с ними примеров как можно больше. Ведь было время, когда и сложение натуральных чисел ставило в тупик. А теперь все нормально.

    Поэтому, перефразируя известную фразу: решать, решать и еще раз решать. Тогда и задания с такими числами будут выполняться легко и непринужденно, как очередная головоломка.

    Кстати, и головоломки поначалу решаются сложно, а потом нужно делать привычные движения. Так же и в математических примерах: пройдя по одному пути несколько раз, потом уже не будешь задумываться над тем, куда повернуть.


Эта статья про десятичные дроби . Здесь мы разберемся с десятичной записью дробных чисел, введем понятие десятичной дроби и приведем примеры десятичных дробей. Дальше поговорим о разрядах десятичных дробей, дадим названия разрядов. После этого остановимся на бесконечных десятичных дробях, скажем о периодических и непериодических дробях. Дальше перечислим основные действия с десятичными дробями. В заключение установим положение десятичных дробей на координатном луче.

Навигация по странице.

Десятичная запись дробного числа

Чтение десятичных дробей

Скажем пару слов о правилах чтения десятичных дробей.

Десятичные дроби, которым соответствуют правильные обыкновенные дроби, читаются также как и эти обыкновенные дроби, только еще предварительно добавляется «ноль целых». Например, десятичной дроби 0,12 отвечает обыкновенная дробь 12/100 (читается «двенадцать сотых»), поэтому, 0,12 читается как «нуль целых двенадцать сотых».

Десятичные дроби, которым соответствуют смешанные числа, читаются абсолютно также как эти смешанные числа. Например, десятичной дроби 56,002 соответствует смешанное число , поэтому, десятичная дробь 56,002 читается как «пятьдесят шесть целых две тысячных».

Разряды в десятичных дробях

В записи десятичных дробей, также как и в записи натуральных чисел, значение каждой цифры зависит от ее позиции. Действительно, цифра 3 в десятичной дроби 0,3 означает три десятых, в десятичной дроби 0,0003 – три десяти тысячных, а в десятичной дроби 30 000,152 – три десятка тысяч. Таким образом, мы можем говорить о разрядах в десятичных дробях , так же как и о разрядах в натуральных числах .

Названия разрядов в десятичной дроби до десятичной запятой полностью совпадают с названиями разрядов в натуральных числах. А названия разрядов в десятичной дроби после запятой видны из следующей таблицы.

Например, в десятичной дроби 37,051 цифра 3 находится в разряде десятков, 7 – в разряде единиц, 0 стоит в разряде десятых, 5 – в разряде сотых, 1 – в разряде тысячных.

Разряды в десятичной дроби также различаются по старшинству. Если в записи десятичной дроби двигаться от цифры к цифре слева на право, то мы будем перемещаться от старших к младшим разрядам . Например, разряд сотен старше разряда десятых, а разряд миллионных младше разряда сотых. В данной конечной десятичной дроби можно говорить о старшем и младшем разряде. К примеру, в десятичной дроби 604,9387 старшим (высшим) разрядом является разряд сотен, а младшим (низшим) - разряд десятитысячных.

Для десятичных дробей имеет место разложение по разрядам. Оно аналогично разложению по разрядам натуральных чисел . Например, разложение по разрядам десятичной дроби 45,6072 таково: 45,6072=40+5+0,6+0,007+0,0002 . А свойства сложения от разложения десятичной дроби по разрядам позволяют перейти к другим представлениям этой десятичной дроби, например, 45,6072=45+0,6072 , или 45,6072=40,6+5,007+0,0002 , или 45,6072=45,0072+0,6 .

Конечные десятичные дроби

До этого момента мы говорили лишь о десятичных дробях, в записи которых после десятичной запятой находится конечное число цифр. Такие дроби называют конечными десятичными дробями.

Определение.

Конечные десятичные дроби – это десятичные дроби, в записях которых содержится конечное число знаков (цифр).

Приведем несколько примеров конечных десятичных дробей: 0,317 , 3,5 , 51,1020304958 , 230 032,45 .

Однако не всякая обыкновенная дробь может быть представлена в виде конечной десятичной дроби. К примеру, дробь 5/13 не может быть заменена равной ей дробью с одним из знаменателей 10, 100, … , следовательно, не может быть переведена в конечную десятичную дробь. Подробнее об этом мы поговорим в разделе теории перевод обыкновенных дробей в десятичные дроби .

Бесконечные десятичные дроби: периодические дроби и непериодические дроби

В записи десятичной дроби после запятой можно допустить возможность наличия бесконечного количества цифр. В этом случае мы придем к рассмотрению так называемых бесконечных десятичных дробей.

Определение.

Бесконечные десятичные дроби – это десятичные дроби, в записи которых находится бесконечное множество цифр.

Понятно, что бесконечные десятичные дроби мы не можем записать в полном виде, поэтому в их записи ограничиваются лишь некоторым конечным числом цифр после запятой и ставят многоточие, указывающее на бесконечно продолжающуюся последовательность цифр. Приведем несколько примеров бесконечных десятичных дробей: 0,143940932… , 3,1415935432… , 153,02003004005… , 2,111111111… , 69,74152152152… .

Если внимательно посмотреть на две последние бесконечные десятичные дроби, то в дроби 2,111111111… хорошо видна бесконечно повторяющаяся цифра 1 , а в дроби 69,74152152152… , начиная с третьего знака после запятой, отчетливо видна повторяющаяся группа цифр 1 , 5 и 2 . Такие бесконечные десятичные дроби называют периодическими.

Определение.

Периодические десятичные дроби (или просто периодические дроби ) – это бесконечные десятичные дроби, в записи которых, начиная с некоторого знака после запятой, бесконечно повторяется какая-нибудь цифра или группа цифр, которую называют периодом дроби .

Например, периодом периодической дроби 2,111111111… является цифра 1 , а периодом дроби 69,74152152152… является группа цифр вида 152 .

Для бесконечных периодических десятичных дробей принята особая форма записи. Для краткости условились период записывать один раз, заключая его в круглые скобки. Например, периодическая дробь 2,111111111… записывается как 2,(1) , а периодическая дробь 69,74152152152… записывается как 69,74(152) .

Стоит отметить, что для одной и той же периодической десятичной дроби можно указать различные периоды. Например, периодическую десятичную дробь 0,73333… можно рассматривать как дробь 0,7(3) с периодом 3 , а также как дробь 0,7(33) с периодом 33 , и так далее 0,7(333), 0,7(3333), … Также на периодическую дробь 0,73333… можно посмотреть и так: 0,733(3) , или так 0,73(333) и т.п. Здесь, чтобы избежать многозначности и разночтений, условимся рассматривать в качестве периода десятичной дроби самую короткую из всех возможных последовательностей повторяющихся цифр, и начинающуюся с самой близкой позиции к десятичной запятой. То есть, периодом десятичной дроби 0,73333… будем считать последовательность из одной цифры 3 , и периодичность начинается со второй позиции после запятой, то есть, 0,73333…=0,7(3) . Еще пример: периодическая дробь 4,7412121212… имеет период 12 , периодичность начинается с третьей цифры после запятой, то есть, 4,7412121212…=4,74(12) .

Бесконечные десятичные периодические дроби получаются при переводе в десятичные дроби обыкновенных дробей, знаменатели которых содержат простые множители, отличные от 2 и 5 .

Здесь же стоит сказать о периодических дробях с периодом 9 . Приведем примеры таких дробей: 6,43(9) , 27,(9) . Эти дроби являются другой записью периодических дробей с периодом 0 , и их принято заменять периодическими дробями с периодом 0 . Для этого период 9 заменяют периодом 0 , а значение следующего по старшинству разряда увеличивают на единицу. Например, дробь с периодом 9 вида 7,24(9) заменяется периодической дробью с периодом 0 вида 7,25(0) или равной ей конечной десятичной дробью 7,25 . Еще пример: 4,(9)=5,(0)=5 . Равенство дроби с периодом 9 и соответствующей ей дроби с периодом 0 легко устанавливается, после замены этих десятичных дробей равными им обыкновенными дробями.

Наконец, повнимательнее рассмотрим бесконечные десятичные дроби, в записи которых отсутствует бесконечно повторяющаяся последовательность цифр. Их называют непериодическими.

Определение.

Непериодические десятичные дроби (или просто непериодические дроби ) – это бесконечные десятичные дроби, не имеющие периода.

Иногда непериодические дроби имеют вид, схожий с видом периодических дробей, например, 8,02002000200002… - непериодическая дробь. В этих случаях следует быть особо внимательными, чтобы заметить разницу.

Отметим, что непериодические дроби не переводятся в обыкновенные дроби, бесконечные непериодические десятичные дроби представляют иррациональные числа .

Действия с десятичными дробями

Одним из действий с десятичными дробями является сравнение, также определены четыре основных арифметических действия с десятичными дробями : сложение, вычитание, умножение и деление. Рассмотрим отдельно каждое из действий с десятичными дробями.

Сравнение десятичных дробей по сути базируется на сравнении обыкновенных дробей , отвечающих сравниваемым десятичным дробям. Однако перевод десятичных дробей в обыкновенные является достаточно трудоемким действием, да и бесконечные непериодические дроби не могут быть представлены в виде обыкновенной дроби, поэтому удобно использовать поразрядное сравнение десятичных дробей. Поразрядное сравнение десятичных дробей аналогично сравнению натуральных чисел . Для получения более детальной информации рекомендуем изучить материал статьи сравнение десятичных дробей, правила, примеры, решения .

Переходим к следующему действию - умножению десятичных дробей . Умножение конечных десятичных дробей проводится аналогично вычитание десятичных дробей, правила, примеры, решения умножению столбиком натуральных чисел. В случае периодических дробей умножение можно свести к умножению обыкновенных дробей . В свою очередь умножение бесконечных непериодических десятичных дробей после их округления сводится к умножению конечных десятичных дробей. Рекомендуем к дальнейшему изучению материал статьи умножение десятичных дробей, правила, примеры, решения .

Десятичные дроби на координатном луче

Между точками и десятичными дробями существует взаимно однозначное соответствие.

Разберемся, как строятся точки на координатном луче, соответствующие данной десятичной дроби.

Конечные десятичные дроби и бесконечные периодические десятичные дроби мы можем заменить равными им обыкновенными дробями, после чего построить соответствующие обыкновенные дроби на координатном луче . Например, десятичной дроби 1,4 отвечает обыкновенная дробь 14/10 , поэтому точка с координатой 1,4 удалена от начала отсчета в положительном направлении на 14 отрезков, равных десятой доле единичного отрезка.

Десятичные дроби можно отмечать на координатном луче, отталкиваясь от разложения данной десятичной дроби по разрядам. Например, пусть нам нужно построить точку с координатой 16,3007 , так как 16,3007=16+0,3+0,0007 , то в данную точку можно попасть, последовательно откладывая от начала координат 16 единичных отрезков, 3 отрезка, длина которых равна десятой доле единичного, и 7 отрезков, длина которого равна десятитысячной доле единичного отрезка.

Такой способ построения десятичных чисел на координатном луче позволяет сколь угодно близко приблизиться к точке, отвечающей бесконечной десятичной дроби.

Иногда возможно точно построить точку, соответствующую бесконечной десятичной дроби. Например, , тогда этой бесконечной десятичной дроби 1,41421… соответствует точка координатного луча, удаленная от начала координат на длину диагонали квадрата со стороной 1 единичный отрезок.

Обратный процесс получения десятичной дроби, соответствующей данной точке на координатном луче, представляет собой так называемое десятичное измерение отрезка . Разберемся, как оно проводится.

Пусть наша задача заключается в том, чтобы попасть из начала отсчета в данную точку координатной прямой (или бесконечно приблизиться к ней, если попасть в нее не получается). При десятичном измерении отрезка мы можем последовательно откладывать от начала отсчета любое количество единичных отрезков, далее отрезков, длина которых равна десятой доле единичного, затем отрезков, длина которых равна сотой доле единичного, и т.д. Записывая количество отложенных отрезков каждой длины, мы получим десятичную дробь, соответствующую данной точке на координатном луче.

К примеру, чтобы попасть в точку М на приведенном выше рисунке, нужно отложить 1 единичный отрезок и 4 отрезка, длина которых равна десятой доле единичного. Таким образом, точке М соответствует десятичная дробь 1,4 .

Понятно, что точкам координатного луча, в которые невозможно попасть в процессе десятичного измерения, соответствуют бесконечные десятичные дроби.

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Дроби записанные в форме 0,8; 0,13; 2,856; 5,2; 0,04 называют десятичными. На самом деле десятичные дроби это упрощенная запись обычных дробей. Эту запись удобно использовать для всех дробей, у которых знаменатели равны 10, 100, 1000 и так далее.

Рассмотрим примеры (0,5 читают как, ноль целых пять десятых);

(0,15 читают как, ноль целых пятнадцать сотых);

(5,3 читают как, пять целых три десятых).

Обратим внимание, что в записи десятичной дроби запятая отделяет целую часть числа от дробной, целая часть правильной дроби рана 0. Запись дробной части десятичной дроби содержит столько цифр, сколько нулей в записи знаменателя соответствующей обыкновенной дроби.

Рассмотрим пример, , , .

В некоторых случаях бывает необходимо рассматривать натуральное число как десятичную дробь, у которой дробная часть равна нулю. Принято записывать что, 5 = 5,0; 245 = 245,0 и так далее. Заметим, что в десятичной записи натурального числа единица младшего разряда в 10 раз меньше единицы соседнего старшего разряда. Таким же свойством обладает запись десятичных дробей. Поэтому сразу после запятой идет разряд десятых, далее разряд сотых, затем разряд тысячных и так далее. Ниже приведены названия разрядов числа 31,85431 первые два столбца — целая часть, остальные столбцы — дробная часть.

Читается эта дробь как тридцать одна целая восемьдесят пять тысяч четыреста тридцать одна стотысячная.

Сложение и вычитание десятичных дробей

Первый способ, это обратить десятичные дроби в обыкновенные и произвести сложение.

как видно из примера этот способ очень неудобный и лучше воспользоваться вторым способом более правильным, не обращая десятичные дроби в обыкновенные. Для того чтобы сложить две десятичные дроби, надо:

  • уравнять в слагаемых количество цифр после запятой;
  • записать слагаемые друг под другом так, чтобы каждый разряд второго слагаемого оказался под соответствующим разрядом первого слагаемого;
  • сложить полученные числа так, как складывают натуральные числа;
  • поставить в полученной сумме запятую под запятыми в слагаемых.

Рассмотрим примеры:

  • уравнять в уменьшаемом и вычитаемом количество цифр после запятой;
  • записать вычитаемое под уменьшаемым так, чтобы каждый разряд вычитаемого оказался под соответствующим разрядом уменьшаемого;
  • произвести вычитание так, как вычитают натуральные числа;
  • поставить в полученной разности запятую под запятыми в уменьшаемом и вычитаемом.

Рассмотрим примеры:

В рассмотренных выше примерах видно, что сложение и вычитание десятичных дробей выполнялось поразрядно, то есть так, как мы производили аналогичные действия с натуральными числами. Это и есть главное преимущество десятичной формы записи дробей.

Умножение десятичных дробей

Для того чтобы умножить десятичную дробь на 10, 100, 1000 и так далее, надо в этой дроби перенести запятую вправо соответственно на 1, 2, 3 и так далее цифры. Следовательно, если запятую перенести вправо на 1, 2, 3 и так далее цифры, то дробь увеличится соответственно в 10, 100, 1000 и так далее раз. Для того чтобы перемножить две десятичные дроби, надо:

  • умножить их как натуральные числа, не обращая внимания на запятые;
  • в полученном произведении отделить запятой справа столько цифр, сколько их стоит после запятых в обоих множителях вместе.

Встречаются случаи, когда произведение содержит меньше цифр, чем требуется отделить запятой, слева перед этим произведением дописывают необходимое количество нулей, а затем переносят запятую влево на нужное количество цифр.

Рассмотрим примеры: 2 * 4 = 8, тогда 0,2 * 0,4 = 0,08; 23 * 35 = 805, тогда 0,023 * 0,35 = 0,00805.

Встречаются случаи, когда один из множителей равен 0,1; 0,01; 0,001 и так далее, удобнее пользоваться следующим правилом.

  • Для того чтобы умножить десятичную дробь на 0,1; 0,01; 0,001 и так далее, надо в этой десятичной дроби перенести запятую влево соответственно на 1, 2, 3 и так далее цифры.

Рассмотрим примеры: 2,65 * 0,1 = 0,265; 457,6 * 0,01 = 4,576.

Свойства умножения натуральных чисел выполняются и для десятичных дробей.

  • ab = ba — переместительное свойство умножения;
  • (ab) c = a (bc) — сочетательное свойство умножения;
  • a (b + c) = ab + ac — распределительное свойство умножения, относительно сложения.

Деление десятичных дробей

Известно, если разделить натуральное число a на натуральное число b означает найти такое натуральное число c , которое при умножении на b дает число a . Это правило остается верным, если хотя бы одно из чисел a, b, c является десятичной дробью.

Рассмотрим пример, требуется разделить 43,52 на 17 уголком, не обращая внимания на запятую. При этом запятую в частном следует поставить непосредственно перед тем, как будет использована первая цифра после запятой в делимом.

Бывают случаи когда делимое меньше делителя, тогда целая часть частного равна нулю. Рассмотрим пример:

Рассмотрим еще один интересный пример.

Процесс деления остановлен, потому что цифры делимого закончились, а в остатке нуль не получили. Известно, что десятичная дробь не изменится, если к ней справа приписать любое количество нулей. Тогда становится понятно, что цифры делимого закончится не могут.

Для того чтобы разделить десятичную дробь на 10, 100, 1000 и так далее, надо в этой дроби перенести запятую влево на 1, 2, 3 и так далее цифры. Рассмотрим пример: 5,14: 10 = 0,514; 2: 100 = 0,02; 37,51: 1000 = 0,03751.

Если делимое и делитель увеличить одновременно в 10, 100, 1000 и так далее раз, то частное не изменится.

Рассмотрим пример: 39,44: 1,6 = 24,65 увеличим делимое и делитель в 10 раз 394,4: 16 = 24,65 справедливо заметить, что делить десятичную дробь на натуральное число во втором примере легче.

Для того чтобы разделить десятичную дробь на десятичную, надо:

  • перенести в делимом и в делителе запятые вправо на столько цифр, сколько их содержится после запятой в делителе;
  • выполнить деление на натуральное число.

Рассмотрим пример: 23,6: 0,02 заметим, что в делителе стоит два знака после запятой, следовательно умножаем оба числа на 100 получаем 2360: 2 = 1180 делим результат на 100 и получаем ответ 11,80 или 23,6: 0,02 = 11,8.

Сравнение десятичных дробей

Существует два способа сравнения десятичных дробей. Способ первый, требуется сравнить две десятичные дроби 4,321 и 4,32 уравниваем количество знаков после запятой и начинаем сравнивать поразрядно, десятые с десятыми, сотые с сотыми и так далее в итоге получаем 4,321 > 4,320.

Второй способ сравнения десятичных дробей производится с помощью умножения, умножим вышеприведенный пример на 1000 и сравним 4321 > 4320. Какой способ удобней, каждый выбирает для себя сам.

Дробь - число, которое состоит из целого числа долей единицы и представляется в виде: a/b

Числитель дроби (a) - число, находящееся над чертой дроби и показывающее количество долей, на которые была поделена единица.

Знаменатель дроби (b) - число, находящееся под чертой дроби и показывающее на сколько долей поделили единицу.

2. Приведение дробей к общему знаменателю

3. Арифметические действия над обыкновенными дробями

3.1. Сложение обыкновенных дробей

3.2. Вычитание обыкновенных дробей

3.3. Умножение обыкновенных дробей

3.4. Деление обыкновенных дробей

4. Взаимно обратные числа

5. Десятичные дроби

6. Арифметические действия над десятичными дробями

6.1. Сложение десятичных дробей

6.2. Вычитание десятичных дробей

6.3. Умножение десятичных дробей

6.4. Деление десятичных дробей

#1. Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же число, не равное нулю, то получится дробь, равная данной.

3/7=3*3/7*3=9/21, то есть 3/7=9/21

a/b=a*m/b*m - так выглядит основное свойство дроби.

Другими словами, мы получим дробь, равную данной, умножив или разделив числитель и знаменатель исходной дроби на одно и то же натуральное число.

Если ad=bc , то две дроби a/b =c /d считаются равными.

Например, дроби 3/5 и 9/15 будут равными, так как 3*15=5*9, то есть 45=45

Сокращение дроби - это процесс замены дроби, при котором новая дробь получается равной исходной, но с меньшим числителем и знаменателем.

Сокращать дроби принято, опираясь на основное свойство дроби.

Например, 45/60=15/ ​20 =9/12=3/4 ​ (числитель и знаменатель делится на число 3, на 5 и на 15 ).

Несократимая дробь - это дробь вида 3/4 ​ , где числитель и знаменатель являются взаимно простыми числами. Основная цель сокращения дроби - сделать дробь несократимой.

2. Приведение дробей к общему знаменателю

Чтобы привести две дроби к общему знаменателю, надо:

1) разложить знаменатель каждой дроби на простые множители;

2) умножить числитель и знаменатель первой дроби на недостающие

множители из разложения второго знаменателя;

3) умножить числитель и знаменатель второй дроби на недостающие множители из первого разложения.

Примеры: приведите дроби к общему знаменателю .

Разложим знаменатели на простые множители: 18=3∙3∙2, 15=3∙5

Умножили числитель и знаменатель дроби на недостающий множитель 5 из второго разложения.

числитель и знаменатель дроби на недостающие множители 3 и 2 из первого разложения.

= , 90 – общий знаменатель дробей .

3. Арифметические действия над обыкновенными дробями

3.1. Сложение обыкновенных дробей

а) При одинаковых знаменателях числитель первой дроби складывают с числителем второй дроби, оставляя знаменатель прежним. Как видно на примере:

a/b+c/b=(a+c)/b ​ ;

б) При разных знаменателях дроби сначала приводят к общему знаменателю, а затем выполняют сложение числителей по правилу а) :

7/3+1/4=7*4/12+1*3/12=(28+3)/12=31/12

3.2. Вычитание обыкновенных дробей

а) При одинаковых знаменателях из числителя первой дроби вычитают числитель второй дроби, оставляя знаменатель прежним:

a/b-c/b=(a-c)/b ​ ;

б) Если же знаменатели дробей различны, то сначала дроби приводят к общему знаменателю, а затем повторяют действия как в пункте а) .

3.3. Умножение обыкновенных дробей

Умножение дробей подчиняется следующему правилу:

a/b*c/d=a*c/b*d,

то есть перемножают отдельно числители и знаменатели.

Например:

3/5*4/8=3*4/5*8=12/40.

3.4. Деление обыкновенных дробей

Деление дробей производят следующим способом:

a/b:c/d=a*d/b*c,

то есть дробь a/b умножается на дробь, обратную данной, то есть умножается на d/c.

Пример: 7/2:1/8=7/2*8/1=56/2=28

4. Взаимно обратные числа

Если a*b=1, то число b является обратным числом для числа a .

Пример: для числа 9 обратным является 1/9 , так как 9*1/9= 1 , для числа 5 - обратное число 1/5 , так как 5* 1/5 = 1 .

5. Десятичные дроби

Десятичной дробью называется правильная дробь, знаменатель которой равен 10, 1000, 10 000, …, 10^n 1 0 , 1 0 0 0 , 1 0 0 0 0 , . . . , 1 0 n .

Например: 6/10=0,6; 44/1000=0,044 .

Таким же способом пишутся неправильные со знаменателем 10^n или смешанные числа.

Например: 51/10=5,1; 763/100=7,63

В виде десятичной дроби представляется любая обыкновенная дробь со знаменателем, который является делителем некой степени числа 10 .

менателем, который является делителем некой степени числа 10 .

Пример: 5 - делитель числа 100 , поэтому дробь 1/5=1 *20/5*20=20/100=0,2 0 = 0 , 2 .

6. Арифметические действия над десятичными дробями

6.1. Сложение десятичных дробей

Для сложения двух десятичных дробей, нужно их расположить так, чтобы друг под другом оказались одинаковые разряды и запятая под запятой, а затем выполнить сложение дробей как обычных чисел.

6.2. Вычитание десятичных дробей

Выполняется аналогично сложению.

6.3. Умножение десятичных дробей

При умножении десятичных чисел достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а в полученном ответе запятой справа отделяется столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Давайте выполним умножение 2,7 на 1,3 . Имеем 27 \cdot 13=351 2 7 ⋅ 1 3 = 3 5 1 . Отделяем справа две цифры запятой (у первого и второго числа - одна цифра после запятой; 1+1=2 1 + 1 = 2 ). В итоге получаем 2,7 \cdot 1,3=3,51 2 , 7 ⋅ 1 , 3 = 3 , 5 1 .

Если в полученном результате получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Для умножения на 10 , 100 , 1000 , надо в десятичной дроби перенести запятую на 1 , 2 , 3 цифры вправо (в случае необходимости справа приписывается определенное число нулей).

Например: 1,47 \cdot 10 000 = 14 700 1 , 4 7 ⋅ 1 0 0 0 0 = 1 4 7 0 0 .

6.4. Деление десятичных дробей

Деление десятичной дроби на натуральное число производят также, как и деление натурального числа на натуральное. Запятая в частном ставится после того, как закончено деление целой части.

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12 . Первым делом, умножим делимое и делитель дроби на 100 , то есть перенесем запятую вправо в делимом и делителе на столько знаков, сколько их стоит в делителе после запятой (в данном примере на две). Затем нужно выполнить деление дроби 257,6 на натуральное число 112 , то есть задача сводится к уже рассмотренному случаю:

Бывает так, что не всегда получается конечная десятичная дробь при делении одного числа на другое. В результате получается бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям.

Например, 2,8: 0,09= 28/10: 9/100= 28*100/10*9=2800/90=280/9 = 31 1/9 .

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то