Как звучит закон архимеда. Закон Архимеда: определение и формула

Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа) . Сила называется силой Архимеда :

где - плотностьжидкости (газа), - ускорение свободного падения, а - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плаваетна поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена кцентру тяжестиэтого объёма.

Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давленийна примере прямоугольного тела.

где P A , P B - давления в точках A и B , ρ - плотность жидкости, h - разница уровней между точками A и B , S - площадь горизонтального поперечного сечения тела, V - объём погружённой части тела.

18. Равновесие тела в покоящейся жидкости

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела. P выт = ρ ж gV погр

Для однородного тела плавающего на поверхности справедливо соотношение

где: V - объем плавающего тела; ρ m - плотность тела.

Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь гидравлической сущности этой теории.

Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называется остойчивостью . Вес жидкости, взятой в объеме погруженной части судна называют водоизмещением , а точку приложения равнодействующей давления (т.е. центр давления) - центром водоизмещения . При нормальном положении судна центр тяжести С и центр водоизмещения d лежат на одной вертикальной прямой O"-O" , представляющей ось симметрии судна и называемой осью плавания (рис.2.5).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K"L"M" , наоборот, погрузилось в нее. При этом получили новое положении центра водоизмещения d" . Приложим к точке d" подъемную силу R и линию ее действия продолжим до пересечения с осью симметрии O"-O" . Полученная точка m называется метацентром , а отрезок mC = h называется метацентрической высотой . Будем считать h положительным, если точка m лежит выше точки C , и отрицательным - в противном случае.

Рис. 2.5. Поперечный профиль судна

Теперь рассмотрим условия равновесия судна:

1)если h > 0, то судно возвращается в первоначальное положение; 2)если h = 0, то это случай безразличного равновесия; 3) если h <0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее опрокидывание судна.

Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше будет остойчивость судна.

Жидкостей и газов, согласно которому на всякое тело, пог-руженное в жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа) и направленная по вертикали вверх.

Этот закон был открыт древнегреческим ученым Архимедом в III в. до н. э. Свои исследования Архимед описал в трактате «О плавающих телах», который считается одним из последних его научных трудов.

Ниже приведены выводы, следующие из закона Архимеда .

Действие жидкости и газа на погруженное в них тело.

Если погрузить в воду мячик, наполненный воздухом, и отпустить его, то он всплывет. То же самое произойдет со щепкой, с пробкой и многими другими телами. Какая же сила заставляет их всплывать?

На тело, погруженное в воду, со всех сторон действуют силы давления воды (рис. а ). В каж-дой точке тела эти силы направлены перпендикулярно его поверхности. Если бы все эти силы были одинаковы, тело испытывало бы лишь всестороннее сжатие. Но на разных глубинах гидростати-ческое давление различно: оно возрастает с увеличением глубины. Поэтому силы давления, приложенные к нижним участкам тела, оказываются больше сил давления, действующих иа тело сверху.

Если заменить все силы давления , приложенные к погруженному в воду телу, одной (резуль-тирующей или равнодействующей) силой, оказывающей на тело то же самое действие, что и все эти отдельные силы вместе, то результирующая сила будет направлена вверх. Это и заставляет тело всплывать. Эта сила называется выталкивающей силой, или архимедовой силой (по имени Архимеда, который впервые указал на ее существование и установил, от чего она зависит). На рисунке б она обозначена как F A .

Архимедова (выталкивающая) сила действует на тело не только в воде, но и в любой другой жидкости, т. к. в любой жидкости существует гидростатическое давление, разное на разных глу-бинах. Эта сила действует и в газах, благодаря чему летают воздушные шары и дирижабли.

Благодаря выталкивающей силе вес любого тела, находящегося в воде (или в любой другой жидкости), оказывается меньше, чем в воздухе, а в воздухе меньше, чем в безвоздушном про-странстве. В этом легко убедиться, взвесив гирю с помощью учебного пружинного динамометра сначала в воздухе, а затем опустив ее в сосуд с водой.

Уменьшение веса происходит и при переносе тела из вакуума в воздух (или какой-либо другой газ).

Если вес тела в вакууме (например, в сосуде, из которого откачан воздух) равен P 0 , то его вес в воздухе равен:

,

где F´ A — архимедова сила, действующая на данное тело в воздухе. Для большинства тел эта сила ничтожно мала и ею можно пренебречь, т. е. можно считать, что P возд. =P 0 =mg .

Вес тела в жидкости уменьшается значительно сильнее, чем в воздухе. Если вес тела в воздухе P возд. =P 0 , то вес тела в жидкости равен P жидк = Р 0 — F A . Здесь F A — архимедова сила, действующая в жидкости. Отсюда следует, что

Поэтому чтобы найти архимедову силу, действующую на тело в какой-либо жидкости, нужно это тело взвесить в воздухе и в жидкости. Разность полученных значений и будет архимедовой (выталкивающей) силой.

Другими словами, учитывая формулу (1.32), можно сказать:

Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу жидкости, вытесненной этим телом.

Определить архимедову силу можно также теоретически. Для этого предположим, что тело, погруженное в жидкость, состоит из той же жидкости, в которую оно погружено. Мы имеем пра-во это предположить, так как силы давления, действующие на тело, погруженное в жидкость, не зависят от вещества, из которого оно сделано. Тогда приложенная к такому телу архимедова сила F A будет уравновешена действующей вниз силой тяжести m ж g (где m ж — масса жидкости в объеме данного тела):

Но сила тяжести равна весу вытесненной жидкости Р ж . Таким образом.

Учитывая, что масса жидкости равна произведению ее плотности ρ ж на объем, формулу (1.33) можно записать в виде:

где V ж — объем вытесненной жидкости. Этот объем равен объему той части тела, которая погру-жена в жидкость. Если тело погружено в жидкость целиком, то он совпадает с объемом V всего тела; если же тело погружено в жидкость частично, то объем V ж вытесненной жидкости меньше объема V тела (рис. 1.39).

Формула (1.33) справедлива и для архимедовой силы, действующей в газе. Только в этом слу-чае в нее следует подставлять плотность газа и объем вытесненного газа, а не жидкости.

С учетом вышеизложенного закон Архимеда можно сформулировать так:

На всякое тело, погруженное в покоящуюся жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная произведению плотности жидкости (или га-за), ускорения свободного падения и объема той части тела, которая погружена в жидкость (или газ).

Разные предметы в жидкости ведут себя по-разному. Одни тонут, другие остаются на поверхности и плавают. Почему так происходит, объясняет закон Архимеда, открытый им при весьма необычных обстоятельствах и ставший основным законом гидростатики.

Как Архимед открыл свой закон

Легенда рассказывает нам, что Архимед открыл свой закон случайно. И этому открытию предшествовало следующее событие.

Царь Сиракуз Гиерон, правивший в 270-215 г.г. до н.э., заподозрил своего ювелира в том, что тот подмешал в заказанную ему золотую корону некоторое количество серебра. Чтобы развеять сомнения, он попросил Архимеда подтвердить или опровергнуть свои подозрения. Как истинного учёного, Архимеда увлекла эта задача. Для её решения нужно было определить вес короны. Ведь если в неё подмешано серебро, то её вес отличался бы от того, как если бы она была сделана из чистого золота. Удельный вес золота был известен. Но как вычислить объём короны? Ведь она имела неправильную геометрическую форму.

Согласно легенде, однажды Архимед, принимая ванну, размышлял над задачей, которую ему предстояло решить. Неожиданно учёный обратил внимание на то, что уровень воды в ванне стал выше после того, как он в неё погрузился. Когда он поднялся, уровень воды снизился. Архимед заметил, что своим телом вытесняет из ванны какое-то количество воды. И объём этой воды равнялся объёму его собственного тела. И тут он понял, как решить задачу с короной. Достаточно лишь погрузить её в сосуд, наполненный водой, и измерить объём вытесненной воды. Говорят, что он так обрадовался, что с криком «Эврика!» («Нашёл!») выскочил из ванны, даже не одевшись.

Так ли это было на самом деле или нет, значения не имеет. Архимед нашёл способ измерения объёма тел со сложной геометрической формой. Он впервые обратил внимание на свойства физических тел, которые называют плотностью, сопоставив их не друг с другом, а с весом воды. Но самое главное, им был открыт принцип плавучести .

Закон Архимеда

Итак, Архимед установил, что тело, погружённое в жидкость, вытесняет такой объём жидкости, который равен объёму самого тела. Е сли в жидкость погружается только часть тела, то оно вытеснит жидкость, объём которой будет равен объёму только той части, которая погружается.

А на само тело в жидкости действует сила, которая выталкивает его на поверхность. Её величина равна весу вытесненной им жидкости. Эту силу называют силой Архимеда .

Для жидкости закон Архимеда выглядит так: на тело, погружённое в жидкость, действует выталкивающая сила, направленная вверх, и равная весу вытесненной этим телом жидкости.

Величина силы Архимеда вычисляется следующим образом:

F A = ρ ɡ V ,

где ρ – плотность жидкости,

ɡ - ускорение свободного падения

V – объём погружённого в жидкость тела, или часть объёма тела, находящаяся ниже поверхности жидкости.

Сила Архимеда всегда приложена к центру тяжести объёма и направлена противоположно силе тяжести.

Следует сказать, что для выполнения этого закона должно соблюдаться одно условие: тело либо пересекается с границей жидкости, либо со всех сторон окружено этой жидкостью. Для тела, которое лежит на дне и герметично касается его, закон Архимеда не действует. Так, если мы положим на дно кубик, одна из граней которого будет плотно соприкасаться с дном, закон Архимеда для него мы не сможем применить.

Силу Архимеда называют также выталкивающей силой .

Эта сила по своей природе – сумма всех сил давления, действующих со стороны жидкости на поверхность тела, погружённого в неё. Выталкивающая сила возникает из-за разности гидростатического давления на разных уровнях жидкости.

Рассмотрим эту силу на примере тела, имеющего форму куба или параллелограмма.

P 2 – P 1 = ρ ɡ h

F A = F 2 – F 1 = ρɡhS = ρɡhV

Закон Архимеда действует и для газов. Но в этом случае выталкивающая сила называется подъёмной, а для её вычисления плотность жидкости в формуле заменяют на плотность газа.

Условие плавания тела

От соотношения значений силы тяжести и силы Архимеда зависит, будет ли тело плавать, тонуть или всплывать.

Если сила Архимеда и сила тяжести равны по величине, то тело в жидкости находится в состоянии равновесия, когда оно не всплывает и не погружается. Говорят, что оно плавает в жидкости. В этом случае F T = F A .

Если же сила тяжести больше силы Архимеда, тело погружается, или тонет.

Здесь F T ˃ F A .

А если значение силы тяжести меньше силы Архимеда, тело всплывает. Это происходит, когда F T ˂ F A .

Но всплывает оно не бесконечно, а лишь до того момента, пока сила тяжести и сила Архимеда не сравняются. После этого тело будет плавать.

Почему не все тела тонут

Если положить в воду два одинаковых по форме и размерам бруска, один из которых сделан из пластмассы, а другой из стали, то можно увидеть, что стальной брусок утонет, а пластмассовый останется на плаву. Так же будет, если взять любые другие предметы одинаковых размеров и формы, но разные по весу, например, пластмассовый и металлический шарики. Металлический шарик пойдёт ко дну, а пластмассовый будет плавать.

Но почему же ведут себя по-разному пластмассовый и стальной бруски? Ведь их объёмы одинаковы.

Да, объёмы одинаковы, но сами бруски сделаны из разных материалов, которые имеют разную плотность. И если плотность материала выше плотности воды, то брусок утонет, а если меньше – будет всплывать до тех пор, пока не окажется на поверхности воды. Это справедливо не только для воды, но и для любой другой жидкости.

Если обозначить плотность тела P t , а плотность среды, в которой оно находится, как P s , то если

P t ˃ Ps (плотность тела выше плотности жидкости) – тело тонет,

P t = Ps (плотность тела равна плотности жидкости) – тело плавает в жидкости,

P t ˂ Ps (плотность тела меньше плотности жидкости) – тело всплывает, пока не окажется на поверхности. После чего оно плавает.

Не выполняется закон Архимеда и в состоянии невесомости. В этом случае отсутствует гравитационное поле, а, значит, и ускорение свободного падения.

Свойство тела, погруженного в жидкость, оставаться в равновесии, не всплывая и не погружаясь дальше, называется плавучестью .

И статики газов.

Энциклопедичный YouTube

  • 1 / 5

    Закон Архимеда формулируется следующим образом : на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме погруженной части тела . Сила называется силой Архимеда :

    F A = ρ g V , {\displaystyle {F}_{A}=\rho {g}V,}

    где ρ {\displaystyle \rho } - плотность жидкости (газа), g {\displaystyle {g}} - ускорение свободного падения , а V {\displaystyle V} - объём погружённой части тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности (равномерно движется вверх или вниз), то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

    Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

    Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

    Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела.

    P B − P A = ρ g h {\displaystyle P_{B}-P_{A}=\rho gh} F B − F A = ρ g h S = ρ g V , {\displaystyle F_{B}-F_{A}=\rho ghS=\rho gV,}

    где P A , P B - давления в точках A и B , ρ - плотность жидкости, h - разница уровней между точками A и B , S - площадь горизонтального поперечного сечения тела, V - объём погружённой части тела.

    В теоретической физике также применяют закон Архимеда в интегральной форме:

    F A = ∬ S p d S {\displaystyle {F}_{A}=\iint \limits _{S}{p{dS}}} ,

    где S {\displaystyle S} - площадь поверхности, p {\displaystyle p} - давление в произвольной точке, интегрирование производится по всей поверхности тела.

    В отсутствие гравитационного поля, то есть в состоянии невесомости , закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции , поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами .

    Обобщения

    Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, центробежной силы) - на этом основано центрифугирование . Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.

    Вывод закона Архимеда для тела произвольной формы

    Гидростатическое давление жидкости на глубине h {\displaystyle h} есть p = ρ g h {\displaystyle p=\rho gh} . При этом считаем ρ {\displaystyle \rho } жидкости и напряжённость гравитационного поля постоянными величинами, а h {\displaystyle h} - параметром. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат O x y z {\displaystyle Oxyz} , причём выберем направление оси z совпадающим с направлением вектора g → {\displaystyle {\vec {g}}} . Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку d S {\displaystyle dS} . На неё будет действовать сила давления жидкости направленная внутрь тела, d F → A = − p d S → {\displaystyle d{\vec {F}}_{A}=-pd{\vec {S}}} . Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

    F → A = − ∫ S p d S → = − ∫ S ρ g h d S → = − ρ g ∫ S h d S → = ∗ − ρ g ∫ V g r a d (h) d V = ∗ ∗ − ρ g ∫ V e → z d V = − ρ g e → z ∫ V d V = (ρ g V) (− e → z) {\displaystyle {\vec {F}}_{A}=-\int \limits _{S}{p\,d{\vec {S}}}=-\int \limits _{S}{\rho gh\,d{\vec {S}}}=-\rho g\int \limits _{S}{h\,d{\vec {S}}}=^{*}-\rho g\int \limits _{V}{grad(h)\,dV}=^{**}-\rho g\int \limits _{V}{{\vec {e}}_{z}dV}=-\rho g{\vec {e}}_{z}\int \limits _{V}{dV}=(\rho gV)(-{\vec {e}}_{z})}

    При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса .

    ∗ h (x , y , z) = z ; ∗ ∗ g r a d (h) = ∇ h = e → z {\displaystyle {}^{*}h(x,y,z)=z;\quad ^{**}grad(h)=\nabla h={\vec {e}}_{z}}

    Получаем, что модуль силы Архимеда равен ρ g V {\displaystyle \rho gV} , а направлена она в сторону, противоположную направлению вектора напряжённости гравитационного поля.

    Другая формулировка (где ρ t {\displaystyle \rho _{t}} - плотность тела, ρ s {\displaystyle \rho _{s}} - плотность среды, в которую оно погружено).

    Знаменитая легенда о том, как нагой Архимед бежал по улице и кричал «Эврика!» («нашел!»), как раз повествует об открытии им того, что выталкивающая сила воды равна по модулю весу вытесненной им воды, объем которой равен объему погруженного в нее тела. Это открытие названо законом Архимеда.

    В III веке до нашей эры царь древнегреческого города Сиракузы попросил проверить ученого Архимеда, из чистого ли золота сделал мастер ему корону. Проблема здесь вот в чем. Когда царь заказывал корону, он дал мастеру определенную массу золота. Когда мастер вернул золото в виде короны, то оно весило столько, сколько и масса данного золота. Но ведь мастер мог схитрить.

    Если взять из общей массы золота немного золота и положить туда равную взятой массе золота массу серебра (которое дешевле), то никто и не заметит. Ведь на глаз не отличишь, а масса такая, какая и должна быть.

    Как известно, масса тела равна произведению плотности вещества, из которого сделано тело, на его объем: m = ρV. Если у разных тел одинаковая масса, но они сделаны из разных веществ, то значит у них будет разный объем. Если бы мастер вернул царю не ювелирно сделанную корону, объем которой определить невозможно из-за ее сложности, а такой же по форме кусок металла, который дал ему царь, то сразу было бы ясно, подмешал он туда другого металла или нет. Просто при равной массе отличались бы объемы кусков. Но как определить объем короны? По-сути именно эта задача стояла перед Архимедом.

    И вот принимая ванну, Архимед обратил внимание, что вода из нее выливается. Он заподозрил, что выливается она именно в том объеме, какой объем занимают его части тела, погруженные в воду. И Архимеда осенило, что объем короны можно определить по объему вытесненной ей воды. Ну а коли можно измерить объем короны, то его можно сравнить с объемом куска золота, равного по массе. Если объемы окажутся равными, то значит ювелирный мастер честно выполнил свою работу. Архимед выскочил из ванной и побежал проверять свое открытие.

    Архимед погрузил в воду корону и измерил, как увеличился объем воды. (Хотя на самом деле Архимед мог измерять потерю веса при погружении тела в воду. Потеря веса равна весу вытесненной воды. А вес воды зависит от вытесненного объема. В свою очередь вытесненный объем воды равен объему погруженного в воду тела.) Также он погрузил в воду кусок золота, у которого масса была такая же как у короны. И тут он измерил, как увеличился объем воды. Объемы вытесненной в двух случаях воды оказались разными. Архимед был рад своему открытию, а вот ювелир не очень.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то