Обратная теорема пифагора формула и доказательство. Теорема, обратная теореме пифагора

По мнению Ван-дер-Вардена , очень вероятно, что соотношение в общем виде было известно в Вавилоне уже около XVIII века до н. э.

Приблизительно в 400 году до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Около в 300 года до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора .

Формулировки

Основная формулировка содержит алгебраические действия - в прямоугольном треугольнике, длины катетов которого равны a {\displaystyle a} и b {\displaystyle b} , а длина гипотенузы - c {\displaystyle c} , выполнено соотношение:

.

Возможна и эквивалентная геометрическая формулировка, прибегающая к понятию площади фигуры : в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. В таком виде теорема сформулирована в Началах Евклида.

Обратная теорема Пифагора - утверждение о прямоугольности всякого треугольника, длины сторон которого связаны соотношением a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} . Как следствие, для всякой тройки положительных чисел a {\displaystyle a} , b {\displaystyle b} и c {\displaystyle c} , такой, что a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} , существует прямоугольный треугольник с катетами a {\displaystyle a} и b {\displaystyle b} и гипотенузой c {\displaystyle c} .

Доказательства

В научной литературе зафиксировано не менее 400 доказательств теоремы Пифагора , что объясняется как фундаментальным значением для геометрии, так и элементарностью результата. Основные направления доказательств: алгебраическое использование соотношений элементов треугольника (таков, например, популярный метод подобия ), метод площадей , существуют также различные экзотические доказательства (например, с помощью дифференциальных уравнений).

Через подобные треугольники

Классическое доказательство Евклида направлено на установление равенства площадей между прямоугольниками, образованными из рассечения квадрата над гипотенузой высотой из прямого угла с квадратами над катетами.

Конструкция, используемая для доказательства следующая: для прямоугольного треугольника с прямым углом C {\displaystyle C} , квадратов над катетами и и квадрата над гипотенузой A B I K {\displaystyle ABIK} строится высота C H {\displaystyle CH} и продолжающий её луч s {\displaystyle s} , разбивающий квадрат над гипотенузой на два прямоугольника и . Доказательство нацелено на установление равенства площадей прямоугольника A H J K {\displaystyle AHJK} с квадратом над катетом A C {\displaystyle AC} ; равенство площадей второго прямоугольника, составляющего квадрат над гипотенузой, и прямоугольника над другим катетом устанавливается аналогичным образом.

Равенство площадей прямоугольника A H J K {\displaystyle AHJK} и A C E D {\displaystyle ACED} устанавливается через конгруэнтность треугольников △ A C K {\displaystyle \triangle ACK} и △ A B D {\displaystyle \triangle ABD} , площадь каждого из которых равна половине площади квадратов A H J K {\displaystyle AHJK} и A C E D {\displaystyle ACED} соответственно в связи со следующим свойством: площадь треугольника равна половине площади прямоугольника, если у фигур есть общая сторона, а высота треугольника к общей стороне является другой стороной прямоугольника. Конгруэнтность треугольников следует из равенства двух сторон (стороны квадратов) и углу между ними (составленного из прямой угла и угла при A {\displaystyle A} .

Таким образом, доказательством устанавливается, что площадь квадрата над гипотенузой, составленного из прямоугольников A H J K {\displaystyle AHJK} и B H J I {\displaystyle BHJI} , равна сумме площадей квадратов над катетами.

Доказательство Леонардо да Винчи

К методу площадей относится также доказательство, найденное Леонардо да Винчи . Пусть дан прямоугольный треугольник △ A B C {\displaystyle \triangle ABC} с прямым углом C {\displaystyle C} и квадраты A C E D {\displaystyle ACED} , B C F G {\displaystyle BCFG} и A B H J {\displaystyle ABHJ} (см. рисунок). В этом доказательстве на стороне H J {\displaystyle HJ} последнего во внешнюю сторону строится треугольник, конгруэнтный △ A B C {\displaystyle \triangle ABC} , притом отражённый как относительно гипотенузы, так и относительно высоты к ней (то есть J I = B C {\displaystyle JI=BC} и H I = A C {\displaystyle HI=AC} ). Прямая C I {\displaystyle CI} разбивает квадрат, построенный на гипотенузе на две равные части, поскольку треугольники △ A B C {\displaystyle \triangle ABC} и △ J H I {\displaystyle \triangle JHI} равны по построению. Доказательство устанавливает конгруэнтность четырёхугольников C A J I {\displaystyle CAJI} и D A B G {\displaystyle DABG} , площадь каждого из которых, оказывается, с одной стороны, равной сумме половин площадей квадратов на катетах и площади исходного треугольника, с другой стороны - половине площади квадрата на гипотенузе плюс площадь исходного треугольника. Итого, половина суммы площадей квадратов над катетами равна половине площади квадрата над гипотенузой, что равносильно геометрической формулировке теоремы Пифагора.

Доказательство методом бесконечно малых

Существует несколько доказательств, прибегающих к технике дифференциальных уравнений . В частности, Харди приписывается доказательство, использующее бесконечно малые приращения катетов a {\displaystyle a} и b {\displaystyle b} и гипотенузы c {\displaystyle c} , и сохраняющие подобие с исходным прямоугольником, то есть, обеспечивающие выполнение следующих дифференциальных соотношений:

d a d c = c a {\displaystyle {\frac {da}{dc}}={\frac {c}{a}}} , d b d c = c b {\displaystyle {\frac {db}{dc}}={\frac {c}{b}}} .

Методом разделения переменных из них выводится дифференциальное уравнение c d c = a d a + b d b {\displaystyle c\ dc=a\,da+b\,db} , интегрирование которого даёт соотношение c 2 = a 2 + b 2 + C o n s t {\displaystyle c^{2}=a^{2}+b^{2}+\mathrm {Const} } . Применение начальных условий a = b = c = 0 {\displaystyle a=b=c=0} определяет константу как 0, что в результате даёт утверждение теоремы.

Квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Вариации и обобщения

Подобные геометрические фигуры на трёх сторонах

Важное геометрическое обобщение теоремы Пифагора дал Евклид в «Началах », перейдя от площадей квадратов на сторонах к площадям произвольных подобных геометрических фигур : сумма площадей таких фигур, построенных на катетах, будет равна площади подобной им фигуры, построенной на гипотенузе.

Главная идея этого обобщения заключается в том, что площадь подобной геометрической фигуры пропорциональна квадрату любого своего линейного размера и в частности квадрату длины любой стороны. Следовательно, для подобных фигур с площадями A {\displaystyle A} , B {\displaystyle B} и C {\displaystyle C} , построенных на катетах с длинами a {\displaystyle a} и b {\displaystyle b} и гипотенузе c {\displaystyle c} соответственно, имеет место соотношение:

A a 2 = B b 2 = C c 2 ⇒ A + B = a 2 c 2 C + b 2 c 2 C {\displaystyle {\frac {A}{a^{2}}}={\frac {B}{b^{2}}}={\frac {C}{c^{2}}}\,\Rightarrow \,A+B={\frac {a^{2}}{c^{2}}}C+{\frac {b^{2}}{c^{2}}}C} .

Так как по теореме Пифагора a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} , то выполнено .

Кроме того, если возможно доказать без привлечения теоремы Пифагора, что для площадей трёх подобных геометрических фигур на сторонах прямоугольного треугольника выполнено соотношение A + B = C {\displaystyle A+B=C} , то с использованием обратного хода доказательства обобщения Евклида можно вывести доказательство теоремы Пифагора. Например, если на гипотенузе построить конгруэтный начальному прямоугольный треугольник площадью C {\displaystyle C} , а на катетах - два подобных ему прямоугольных треугольника с площадями A {\displaystyle A} и B {\displaystyle B} , то оказывается, что треугольники на катетах образуются в результате деления начального треугольника его высотой, то есть сумма двух меньших площадей треугольников равна площади третьего, таким образом A + B = C {\displaystyle A+B=C} и, применяя соотношение для подобных фигур, выводится теорема Пифагора.

Теорема косинусов

Теорема Пифагора - это частный случай более общей теоремы косинусов, которая связывает длины сторон в произвольном треугольнике :

a 2 + b 2 − 2 a b cos ⁡ θ = c 2 {\displaystyle a^{2}+b^{2}-2ab\cos {\theta }=c^{2}} ,

где - угол между сторонами a {\displaystyle a} и b {\displaystyle b} . Если угол равен 90°, то cos ⁡ θ = 0 {\displaystyle \cos \theta =0} , и формула упрощается до обычной теоремы Пифагора.

Произвольный треугольник

Существует обобщение теоремы Пифагора на произвольный треугольник, оперирующее исключительно соотношением длин сторон, считается, что оно впервые было установлено сабийским астрономом Сабитом ибн Куррой . В нём для произвольного треугольника со сторонами в него вписывается равнобедренный треугольник с основанием на стороне c {\displaystyle c} , вершиной, совпадающей с вершиной исходного треугольника, противолежащей стороне c {\displaystyle c} и углами при основании, равными углу θ {\displaystyle \theta } , противолежащему стороне c {\displaystyle c} . В результате образуются два треугольника, подобных исходному: первый - со сторонами a {\displaystyle a} , дальней от неё боковой стороной вписанного равнобедренного треугольника, и r {\displaystyle r} - части стороны c {\displaystyle c} ; второй - симметрично к нему от стороны b {\displaystyle b} со стороной s {\displaystyle s} - соответствующей частью стороны c {\displaystyle c} . В результате оказывается выполнено соотношение :

a 2 + b 2 = c (r + s) {\displaystyle a^{2}+b^{2}=c(r+s)} ,

вырождающееся в теорему Пифагора при θ = π / 2 {\displaystyle \theta =\pi /2} . Соотношение является следствием подобия образованных треугольников:

c a = a r , c b = b s ⇒ c r + c s = a 2 + b 2 {\displaystyle {\frac {c}{a}}={\frac {a}{r}},\,{\frac {c}{b}}={\frac {b}{s}}\,\Rightarrow \,cr+cs=a^{2}+b^{2}} .

Теорема Паппа о площадях

Неевклидова геометрия

Теорема Пифагора выводится из аксиом евклидовой геометрии и недействительна для неевклидовой геометрии - выполнение теоремы Пифагора равносильно постулату Евклида о параллельности .

В неевклидовой геометрии соотношение между сторонами прямоугольного треугольника обязательно будет в форме, отличной от теоремы Пифагора. Например, в сферической геометрии все три стороны прямоугольного треугольника, которые ограничивают собой октант единичной сферы, имеют длину π / 2 {\displaystyle \pi /2} , что противоречит теореме Пифагора.

При этом теорема Пифагора справедлива в гиперболической и эллиптической геометрии, если требование о прямоугольности треугольника заменить условием, что сумма двух углов треугольника должна равняться третьему .

Сферическая геометрия

Для любого прямоугольного треугольника на сфере радиусом R {\displaystyle R} (например, если угол в треугольнике прямой) со сторонами a , b , c {\displaystyle a,b,c} соотношение между сторонами имеет вид :

cos ⁡ (c R) = cos ⁡ (a R) ⋅ cos ⁡ (b R) {\displaystyle \cos \left({\frac {c}{R}}\right)=\cos \left({\frac {a}{R}}\right)\cdot \cos \left({\frac {b}{R}}\right)} .

Это равенство может быть выведено как особый случай сферической теоремы косинусов , которая справедлива для всех сферических треугольников:

cos ⁡ (c R) = cos ⁡ (a R) ⋅ cos ⁡ (b R) + sin ⁡ (a R) ⋅ sin ⁡ (b R) ⋅ cos ⁡ γ {\displaystyle \cos \left({\frac {c}{R}}\right)=\cos \left({\frac {a}{R}}\right)\cdot \cos \left({\frac {b}{R}}\right)+\sin \left({\frac {a}{R}}\right)\cdot \sin \left({\frac {b}{R}}\right)\cdot \cos \gamma } . ch ⁡ c = ch ⁡ a ⋅ ch ⁡ b {\displaystyle \operatorname {ch} c=\operatorname {ch} a\cdot \operatorname {ch} b} ,

где ch {\displaystyle \operatorname {ch} } - гиперболический косинус . Эта формула является частным случаем гиперболической теоремы косинусов, которая справедлива для всех треугольников :

ch ⁡ c = ch ⁡ a ⋅ ch ⁡ b − sh ⁡ a ⋅ sh ⁡ b ⋅ cos ⁡ γ {\displaystyle \operatorname {ch} c=\operatorname {ch} a\cdot \operatorname {ch} b-\operatorname {sh} a\cdot \operatorname {sh} b\cdot \cos \gamma } ,

где γ {\displaystyle \gamma } - угол, вершина которого противоположна стороне c {\displaystyle c} .

Используя ряд Тейлора для гиперболического косинуса ( ch ⁡ x ≈ 1 + x 2 / 2 {\displaystyle \operatorname {ch} x\approx 1+x^{2}/2} ) можно показать, что если гиперболический треугольник уменьшается (то есть, когда a {\displaystyle a} , b {\displaystyle b} и c {\displaystyle c} стремятся к нулю), то гиперболические соотношения в прямоугольном треугольнике приближаются к соотношению классической теоремы Пифагора.

Применение

Расстояние в двумерных прямоугольных системах

Важнейшее применение теоремы Пифагора - определение расстояния между двумя точками в прямоугольной системе координат : расстояние s {\displaystyle s} между точками с координатами (a , b) {\displaystyle (a,b)} и (c , d) {\displaystyle (c,d)} равно:

s = (a − c) 2 + (b − d) 2 {\displaystyle s={\sqrt {(a-c)^{2}+(b-d)^{2}}}} .

Для комплексных чисел теорема Пифагора даёт естественную формулу для нахождения модуля комплексного числа - для z = x + y i {\displaystyle z=x+yi} он равен длине

Цели урока:

Образовательная: сформулировать и доказать теорему Пифагора и теорему, обратную теореме Пифагора. Показать их историческое и практическое значение.

Развивающая: развивать внимание, память, логическое мышление учащихся, умение рассуждать, сравнивать, делать выводы.

Воспитывающая: воспитывать интерес и любовь к предмету, аккуратность, умение слушать товарищей и учителя.

Оборудование: Портрет Пифагора, плакаты с задачами для закрепления, учебник “Геометрия” 7-9 классы (И.Ф. Шарыгин).

План урока:

I. Организационный момент – 1 мин.

II. Проверка домашнего задания – 7 мин.

III. Вступительное слово учителя, историческая справка – 4-5 мин.

IV. Формулировка и доказательство теоремы Пифагора – 7 мин.

V. Формулировка и доказательство теоремы, обратной теореме Пифагора – 5 мин.

Закрепление нового материала:

а) устное – 5-6 мин.
б) письменное – 7-10 мин.

VII. Домашнее задание – 1 мин.

VIII. Подведение итогов урока – 3 мин.

Ход урока

I. Организационный момент.

II. Проверка домашнего задания.

п.7.1, № 3 (у доски по готовому чертежу).

Условие: Высота прямоугольного треугольника делит гипотенузу на отрезки длиной 1 и 2. Найдите катеты этого треугольника.

BC = a; CA = b; BA = c; BD = a 1 ; DA = b 1 ; CD = h C

Дополнительный вопрос: записать соотношения в прямоугольном треугольнике.

п.7.1, № 5. Разрежьте прямоугольный треугольник на три подобных между собой треугольника.

Объясните.

АСН ~ АВС ~ СВН

(обратить внимание учащихся на правильность записи соответственных вершин подобных треугольников)

III. Вступительное слово учителя, историческая справка.

Пребудет вечной истина, как скоро её познает слабый человек!

И ныне теорема Пифагора верна, как и в его далекий век.

Не случайно я начала свой урок со слов немецкого писателя-романиста Шамиссо. Наш урок сегодня посвящен теореме Пифагора. Запишем тему урока.

Перед вами портрет великого Пифагора. Родился в 576 году до нашей эры. Прожив 80 лет, умер в 496 году до нашей эры. Известен как древнегреческий философ и педагог. Был сыном торговца Мнесарха, который брал его часто в свои поездки, благодаря которым у мальчика развились любознательность и желание познать новое. Пифагор – это прозвище, данное ему за красноречие (“Пифагор” - значит “убеждающий речью”). Сам он ничего не писал. Все его мысли записывали его ученики. В результате первой же прочитанной лекции, Пифагор приобрел 2000 учеников, которые вместе со своими женами и детьми образовали громадную школу и создали государство, названное “Великая Греция”, в основу которого положены законы и правила Пифагора, почитаемые как божественные заповеди. Он был первым, кто назвал свои рассуждения о смысле жизни философией (любомудрием). Был склонен к мистификации и демонстративности в поведении. Однажды Пифагор спрятался под землей, а обо всем происходящем узнавал от матери. Потом, иссохший как скелет, он заявил в народном собрании, что был в Аиде, и показал удивительную осведомленность о земных событиях. За это растроганные жители признали его Богом. Пифагор никогда не плакал и вообще был недоступен страстям и волнению. Считал, что он происходит из семени, лучшего сравнительно с человеческим. Вся жизнь Пифагора – легенда, дошедшая до нашего времени и рассказавшая нам о талантливейшем человеке древнего мира.

IV. Формулировка и доказательство теоремы Пифагора.

Формулировка теоремы Пифагора известна вам с курса алгебры. Давайте вспомним её.

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Однако эту теорему знали за много лет до Пифагора. За 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4 и 5 является прямоугольным и пользовались этим свойством для построения прямых углов при планировке земельных участков и сооружении зданий. В самом древнем дошедшем до нас китайском математико-астрономическом сочинении “Чжиу-би”, написанным за 600 лет до Пифагора, среди других предложений, относящихся к прямоугольному треугольнику, содержится и теорема Пифагора. Ещё раньше эта теорема была известна индусам. Таким образом, Пифагор не открыл это свойство прямоугольного треугольника, он, вероятно, первым сумел его обобщить и доказать, перевести его из области практики в область науки.

С глубокой древности математики находят все новые и новые доказательства теоремы Пифагора. Их известно более полутора сотен. Давайте вспомним алгебраическое доказательство теоремы Пифагора, известное нам из курса алгебры. (“Математика. Алгебра. Функции. Анализ данных” Г.В. Дорофеев, М., “Дрофа”, 2000 г).

Предложить учащимся вспомнить доказательство к чертежу и записать его на доске.

(а + b) 2 = 4· 1/2 а * b + с 2 b а

а 2 + 2а * b + b 2 = 2а * b + с 2

а 2 + b 2 = с 2 а а b

Древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: “Смотри”.

Рассмотрим в современном изложении одно из доказательств, принадлежащих Пифагору. Вначале урока мы вспомнили теорему о соотношениях в прямоугольном треугольнике:

h 2 = а 1* b 1 а 2 = а 1* с b 2 = b 1* с

Сложим почленно последних два равенства:

b 2 + а 2 = b 1* с + а 1* с = (b 1 + а 1) * с 1 = с * с = с 2 ; а 2 + b 2 = с 2

Несмотря на кажущуюся простоту этого доказательства, оно далеко не самое простое. Ведь для этого нужно было провести высоту в прямоугольном треугольнике и рассмотреть подобные треугольники. Запишите, пожалуйста, это доказательство в тетради.

V. Формулировка и доказательство теоремы, обратной теореме Пифагора.

А какая теорема называется обратной к данной? (…если условие и заключение меняются местами.)

Давайте теперь попробуем сформулировать теорему, обратную теореме Пифагора.

Если в треугольнике со сторонами а, b и с выполняется равенство с 2 = а 2 + b 2 , то этот треугольник прямоугольный, причем прямой угол противолежит стороне с.

(Доказательство обратной теоремы на плакате)

АВС, ВС = а,

АС = b, ВА = с.

а 2 + b 2 = с 2

Доказать:

АВС – прямоугольный,

Доказательство:

Рассмотрим прямоугольный треугольник А 1 В 1 С 1,

где С 1 = 90° , А 1 С 1 = а, А 1 С 1 = b.

Тогда по теореме Пифагора В 1 А 1 2 = а 2 + b 2 = с 2 .

То есть В 1 А 1 = с А 1 В 1 С 1 = АВС по трем сторонам АВС - прямоугольный

С = 90° , что и требовалось доказать.

VI. Закрепление изученного материала (устно).

1. По плакату с готовыми чертежами.

Рис.1: найдите АD, если ВD = 8, ВDА = 30°.

Рис.2: найдите CD, если ВЕ = 5, ВАЕ = 45°.

Рис.3: найдите ВD, если ВС = 17, АD = 16.

2. Является ли треугольник прямоугольным, если его стороны выражаются числами:

5 2 + 6 2 ? 7 2 (нет)

9 2 + 12 2 = 15 2 (да)

15 2 + 20 2 = 25 2 (да)

Как называются тройки чисел в двух последних случаях? (Пифагоровы).

VI. Решение задач (письменно).

№ 9. Сторона равностороннего треугольника равна а. Найдите высоту этого треугольника, радиус описанной окружности, радиус вписанной окружности.

№ 14. Докажите, что в прямоугольном треугольнике радиус описанной окружности равен медиане, проведенной к гипотенузе, и равен половине гипотенузы.

VII. Домашнее задание.

Пункт 7.1, стр. 175-177, разобрать теорему 7.4 (обобщенная теорема Пифагора), № 1(устно), № 2, № 4.

VIII. Итоги урока.

Что нового вы узнали сегодня на уроке? …………

Пифагор прежде всего был философом. Вот сейчас хочу вам прочитать несколько его изречений, актуальных и в наше время для нас с вами.

  • Не поднимай пыли на жизненном пути.
  • Делай лишь то, что в последствии не огорчит тебя и не принудит раскаиваться.
  • Не делай никогда того, чего не знаешь, но научись всему, что следует знать, и тогда ты будешь вести спокойную жизнь.
  • Не закрывай глаза, когда хочется спать, не разобравши всех своих поступков в прошлый день.
  • Приучайся жить просто и без роскоши.

Рассмотрение тем школьной программы с помощью видеоуроков является удобным способом изучения и усвоения материала. Видео помогает сконцентрировать внимание учащихся на основных теоретических положениях и не упускать важных деталей. При необходимости школьники всегда могут прослушать видеоурок повторно или вернуться на несколько тем назад.

Данный видеоурок для 8-го класса поможет учащимся изучить новую тему по геометрии.

В предыдущей теме мы изучили теорему Пифагора и разобрали ее доказательство.

Существует также теорема, которая известна как обратная теорема Пифагора. Рассмотрим ее подробнее.

Теорема. Треугольник является прямоугольным, если в нем выполняется равенство: значение одной стороны треугольника, возведенной в квадрат, такое же, как сумма возведенных в квадрат двух других сторон.

Доказательство. Допустим, нам дан треугольник ABC, в котором выполняется равенство AB 2 = CA 2 + CB 2 . Необходимо доказать, что угол С равен 90 градусов. Рассмотрим треугольник A 1 B 1 C 1 , в котором угол С 1 равен 90 градусов, сторона C 1 A 1 равна CA и сторона B 1 C 1 равна BС.

Применяя теорему Пифагора, запишем отношение сторон в треугольнике A 1 C 1 B 1: A 1 B 1 2 = C 1 A 1 2 + C 1 B 1 2 . Произведя замену в выражении на равные стороны, получим A 1 B 1 2 = CA 2 + CB 2 .

Из условий теоремы мы знаем, что AB 2 = CA 2 + CB 2 . Тогда можем записать A 1 B 1 2 = AB 2 , из чего следует, что A 1 B 1 = AB.

Мы нашли, что в треугольниках ABC и A 1 B 1 C 1 равны три стороны: A 1 C 1 = AC, B 1 C 1 = BC, A 1 B 1 = AB. Значит, эти треугольники равны. Из равенства треугольников следует, что угол С равен углу С 1 и соответственно равен 90 градусов. Мы определили, что треугольник ABC прямоугольный и его угол С равен 90 градусов. Мы доказали данную теорему.

Далее автор приводит пример. Допустим, дан произвольный треугольник. Известны размеры его сторон: 5, 4 и 3 единиц. Проверим утверждение из теоремы, обратной теореме Пифагора: 5 2 = 3 2 + 4 2 . Утверждение верно, значит данный треугольник прямоугольный.

В следующих примерах треугольники также будут прямоугольными, если их стороны равны:

5, 12, 13 единиц; равенство 13 2 = 5 2 + 12 2 является верным;

8, 15, 17 единиц; равенство 17 2 = 8 2 + 15 2 является верным;

7, 24, 25 единиц; равенство 25 2 = 7 2 + 24 2 является верным.

Известно понятие пифагорового треугольника. Это прямоугольный треугольник, у которого значения сторон равны целым числам. Если катеты пифагорового треугольника обозначить через a и c, а гипотенузу b, то значения сторон этого треугольника можно записать с помощью следующих формул:

b = k x (m 2 - n 2)

c = k x (m 2 + n 2)

где m, n, k- любые натуральные числа, причем значение m больше значения n.

Интересный факт: треугольник со сторонами 5, 4 и 3 называют также египетским треугольником, такой треугольник был известен еще в Древнем Египте.

В данном видеоуроке мы ознакомились с теоремой, обратной теореме Пифагора. Подробно рассмотрели доказательство. Также учащиеся узнали, какие треугольники называют пифагоровыми.

Учащиеся с легкостью могут ознакомиться с темой «Теорема, обратная теореме Пифагора» самостоятельно с помощью данного видеоурока.

Замечательно, что свойство указанное в теореме Пифагора, является характеристическим свойством прямоугольного треугольника. Это следует из теоремы, обратной теореме Пифагора.

Теорема: Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.

Формула Герона

Выведем формулу, выражающую плоскость треугольника через длины его сторон. Эту формулу связывают с именем Герона александрийского - древнегреческого математика и механика, жившего, вероятно в 1 в.н.э. Герон много уделял внимания практическим приложениям геометрии.

Теорема. Площадь S треугольника, стороны которого равны a , b , c , вычисляется по формуле S=, где p - полупериметр треугольника.

Доказательство.

Дано: ?ABC, АВ= с, ВС= а, АС= b.Углы А и В, острые. СН - высота.

Доказать:

Доказательсво:

Рассмотрим треугольник ABC, в котором AB=c , BC=a, AC=b. Во всяком треугольнике, по крайней мере, два угла острые. Пусть А и В - острые углы треугольника АВС. Tогда основание H высоты CH треугольника лежит на стороне AB. Введем обозначения: CH = h, AH=y, HB=x. по теореме Пифагора a 2 - x 2 = h 2 =b 2 -y 2 , откуда

Y 2 - x 2 = b 2 - a 2 , или (y - x) (y + x) = b 2 - a 2 , а так как y + x = c, то y- x = (b2 - a2).

Складывая два последних равенства, п олучаем:

2y = +c, откуда

y=,и, значит, h 2 = b 2 -y 2 =(b - y)(b+y)=

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то