Правило ленца определяет направление. Правило ленца лабораторная

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Магнитным потоком Φ через площадь S контура называют величину Φ = B · S · cos α, где B – модуль вектора магнитной индукции , α – угол между вектором B → и нормалью n → к плоскости контура (рис. 1.20.1).

Магнитный поток через замкнутый контур. Направление нормали n → и выбранное положительное направление l → обхода контура связаны правилом правого буравчика

Определение магнитного потока нетрудно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ называется вебером (Вб). Магнитный поток, равный 1 Вб , создается магнитным полем с индукцией 1 Тл , пронизывающим по направлению нормали плоский контур площадью 1 м 2 : 1 Вб = 1 Тл · 1 м 2 .

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции ℰ инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус: ℰ инд = - Δ Φ Δ t .

Эта формула носит название закона Фарадея.

Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение, сформулированное в 1833 г., называется правилом Ленца.

Рис. 1.20.2 иллюстрирует правило Ленца на примере неподвижного проводящего контура, который находится в однородном магнитном поле, модуль индукции которого увеличивается во времени.

Иллюстрация правила Ленца. В этом примере Δ Φ Δ t > 0 , а ℰ инд < 0 . Индукционный ток I инд течет навстречу выбранному положительному направлению l → обхода контура

Правило Ленца отражает тот экспериментальный факт, что ℰ инд и Δ Φ Δ t всегда имеют противоположные знаки (знак «минус» в формуле Фарадея). Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам.

1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле B → , перпендикулярное плоскости контура. Пусть одна из сторон контура длиной l скользит со скоростью υ → по двум другим сторонам (рис. 1.20.3).

Возникновение ЭДС индукции в движущемся проводнике. Указана составляющая силы Лоренца, действующей на свободный электрон

На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью υ → зарядов, направлена вдоль проводника. Эта составляющая указана на рис. 1.20.3. Она играет роль сторонней силы. Ее модуль равен F Л = e υB

Работа силы F Л на пути l равна A = F Л · l = e υBl .

По определению ЭДС ℰ инд = A e = υ B l .

В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для ℰ инд можно придать привычный вид. За время Δt площадь контура изменяется на ΔS = l υΔt . Изменение магнитного потока за это время равно ΔΦ = Bl υΔt . Следовательно, | ℰ инд | = | Δ Φ Δ t | .

Для того, чтобы установить знак в формуле, связывающей ℰ инд и Δ Φ Δ t , нужно выбрать согласованные между собой по правилу правого буравчика направление нормали n → и положительное направление обхода контура l → , как это сделано на рис. 1.20.1 и 1.20.2. Если это сделать, то легко прийти к формуле Фарадея.

Если сопротивление всей цепи равно R , то по ней будет протекать индукционный ток, равный I инд = ℰ инд /R . За время Δt на сопротивлении R выделится джоулево тепло Δ Q = R I инд 2 Δ t = υ 2 B 2 l 2 R Δ t .

Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера F → A . Для случая, изображенного на рис. 1.20.3, модуль силы Ампера равен F A = I B l . Сила Ампера направлена навстречу движению проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа A мех равна A мех = - F υ Δ t = - I B l υ Δ t = - υ 2 B 2 l 2 R Δ t .

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю . Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не является потенциальным . Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 г.

Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково , но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Электромагнитная индукция Опыты Фарадея Генератор переменного тока

В 1831 году английский ученый физик в своих опытах М.Фарадей открыл явление электромагнитной индукции . Затем изучением этого явления занимались русские ученый Э.Х. Ленц и Б.С.Якоби.

В настоящее время, в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или генераторе электрического тока тока, в трансформаторах, радиоприемниках, и многих других устройствах.

Электромагнитная индукция - это явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока. То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую - и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока , кроме гальваники.

Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.

Закон электромагнитной индукции

Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром.

В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:

Но в общем случае, применяют формулу ЭДС с общим потокосцеплением:

ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в проводнике является катушка, через которую проходит постоянный магнит . Направление индуцируемого тока можно определить с помощью правила Ленца .


Правило Ленца

Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.

В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита. Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу. Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.

Определение 1

Э.Х.Ленц предложил правило (закон) , который позволяет найти направление индукционного тока . В его формулировке он таков: «Если металлический проводник передвигается вблизи гальванического тока или вблизи магнита, то в нем возбуждается гальванический ток такого направления, которое вызвало бы движение покоящегося провода в направлении, прямо противоположном направлению движения , навязанного здесь проводу извне, в предположении, что находящийся в покое провод может двигаться только в направлении этого последнего движения или в прямо противоположном».

Определение 2

В настоящее время правило Ленца формулируют короче: «Направление индукционного тока таково, что его действие противоположно действию причины его вызывающей». Или: Токи индукции, которых появляются в проводнике в результате их движения в постоянном магнитном поле имеют такое направление, при котором пондемоторные силы магнитного поля, которые испытывают эти проводники, препятствуют движению проводников.

Это правило соблюдается во всех случаях возникновения индукции.

Рисунок 1.

Допустим, что индукция возникает в контуре (2) при его перемещении в магнитном поле контура с током (1) (рис.1). При этом появляется индукционный ток, имеющий такое направление, что сила взаимодействия с контуром (1) противодействует движению контура. Если контур (2) приближать к контуру (1), появляется ток $I_2"$, при этом магнитный момент этого тока направлен против поля тока $I_1$. На контур (2) действует сила, которая отталкивает его от контура (1). Если контур (2) удалять от контура (1) в контуре (2) возникнет ток $I^{""}_2,$ направление его момента совпадет с полем тока $I_1$, следовательно, сила, которая действует на контур (2) притягивает его к контуру (1).

Допустим, что оба контура неподвижны, в контуре (1) течет переменный ток $I_1$, изменения которого вызывает появление тока $I_2$. Направление тока во втором конуре таково, что создаваемый этим током магнитный поток $(Ф)$ стремится ослабить изменения внешнего потока, который ведет к возникновению индукционного тока. При увеличении тока $I_1$ увеличивается внешний магнитный поток, который направлен вправо, появляется ток $I_2"$, который создает поток, направленный влево (рис.1).

В случае если ток $I_1$ уменьшается, в контуре (2) появляется ток $I^{""}_2,$ магнитный поток которого направлен так же, как внешний поток, дополнительный магнитный поток поддерживает внешний поток без изменений.

Правило Ленца и закон сохранения энергии

Закон Ленца является следствием закона сохранения энергии. Индукционные токи, как и любые другие, производят работу. Например, если замкнутый проводник движется в магнитном поле, внешними силами должна быть выполнена дополнительная работа, так как индукционные токи взаимодействуют с магнитным полем, порождая силы, которые направлены противоположно движению.

Пример 1

Задание: Укажите направление индукционного тока, который возникает в контуре а) если магнит приближать к контуру; b) при удалении магнита от контура (рис.2). Объясните, как взаимодействуют магнит и виток с током в случаях a) и b).

Рисунок 2.

Решение:

Когда мы приближаем к контуру северный полюс магнита $(N)$, то на контуре возникает тоже северный магнитный полюс. Когда мы удаляем от контура северный полюс магнита, то на контуре возникает южный полюс. При этом одноименные полюса магнита отталкиваются, а разноименные притягиваются. Значит, когда возникает индукционный ток в контуре при приближении магнита к контуру, то силы взаимодействия между магнитом и индукционным током отталкивают магнит от витка, а в случае возникновения тока в контуре при удалении магнита, то виток с индукционным током и магнит притягиваются.

В соответствии с правилом Ленца, направления токов будут иметь направления, указанные на рис.3.

Рисунок 3.

Пример 2

Задание: Прямолинейный проводник длины $l$ движется параллельно самому себе в магнитном поле. Этот проводник может входить в состав замкнутой цепи, остальные части которой неподвижны. Найдите ЭДС, которая возникает в проводнике, укажите направление индукционного тока.

Решение:

Рисунок 4.

Обозначим через $v$ мгновенную скорость движения проводника, $dt$ - время движения проводника, тогда проводник опишет площадь равную:

За время $dt$ проводник пересечет все линии магнитной индукции, которые проходят через площадь $dS$. Изменение магнитного потока, следовательно, можно записать как:

где $B_n$ - составляющая магнитной индукции, которая перпендикулярна к площадке $dS$. Используя закон Фарадея, получим:

\[{{\mathcal E}}_i=-\frac{dФ}{dt}={-B}_nlv.\]

Направление индукционного тока и знак ЭДС определяется правилом Ленца. Ток направлен так, что механическая сила, действующая на проводник, противоположна скорости.

Ответ: ${{\mathcal E}}_i={-B}_nlv.$

Явление электромагнитной индукции заключается в том, что в результате изменения во времени магнитного потока, который пронизывает замкнутый проводящий контур, в контуре возникает электрический ток. Открыто это явление было физиком из Великобритании Максом Фарадеем в 1831 году.

Введем обозначения, необходимые нам для записи формулы. Для обозначения магнитного потока используем букву Ф, площади контура – S , модуля вектора магнитной индукции – B , α – это угол между вектором B → и нормалью n → к плоскости контура.

Магнитный поток, который проходит через площадь замкнутого проводящего контура, можно задать следующей формулой:

Φ = B · S · cos α ,

Проиллюстрируем формулу.

Рисунок 1 . 20 . 1 . Магнитный поток через замкнутый контур. Направление нормали n → и выбранное положительное направление l → обхода контура связаны правилом правого буравчика.

За единицу магнитного потока в С И принят 1 вебер (В б) . Магнитный поток, равный 1 В б, может быть создан в плоском контуре площадью 1 м 2 под воздействием магнитного поля с индукцией 1 Т л, которое пронизывает контур по направлению нормали.

1 В б = 1 Т л · м 2

Закон Фарадея

Изменение магнитного потока приводит к тому, что в проводящем контуре возникает ЭДС индукции δ и н д. Она равна скорости, с которой происходит изменение магнитного потока через ограниченную контуром поверхность, взятой со знаком минус. Впервые экспериментально установил это Макс Фарадей. Он же записал свое наблюдение в виде формулы ЭДС индукции, которая теперь носит название Закона Фарадея:

Определение 1

Закон Фарадея:

δ и н д = - ∆ Φ ∆ t

Правило Ленца

Определение 2

Согласно результатам опытов, индукционный ток, который возникает в замкнутом контуре в результате изменения магнитного потока, всегда направлен определенным образом. Создаваемое индукционным током магнитное поле препятствует изменению вызвавшего этот индукционный ток магнитного потока. Ленц сформулировал это правило в 1833 году.

Проиллюстрируем правило Ленца рисунком, на котором изображен неподвижный замкнутый проводящий контур, помещенный в однородное магнитное поле. Модуль индукции увеличивается во времени.

Пример 1

Благодаря правилу Ленца мы можем обосновать тот факт, что в формуле электромагнитной индукции δ и н д и ∆ Φ ∆ t противоположны по знакам.

Если задуматься о физическом смысле правила Ленца, то это частный случай Закона сохранения энергии.

Причин, по которым может происходить изменение магнитного потока, пронизывающего замкнутый контур, две:

  1. Изменение магнитного потока вследствие перемещения всего контура или отдельных его частей в магнитном поле, которое не изменяется со временем;
  2. Изменение магнитного поля при неподвижном контуре.

Перейдем к рассмотрению этих случаев подробнее.

Перемещение контура или его частей в неизменном магнитном поле

При движении проводников и свободных носителей заряда в магнитном поле возникает ЭДС индукции. Объяснить возникновение δ и н д можно действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца здесь – это сторонняя сила.

Пример 2

На рисунке мы изобразили пример индукции, когда прямоугольный контур помещен в однородное магнитное поле B → направленное перпендикулярно плоскости контура. Одна из сторон контура перемещается по двум другим сторонам с некоторой скоростью.

Рисунок 1 . 20 . 3 . Возникновение ЭДС индукции в движущемся проводнике. Отражена составляющая силы Лоренца, которая действует на свободный электрон

На свободные заряды подвижной части контура воздействует сила Лоренца. Основная составляющая силы Лоренца в данном случае направлена вдоль проводника и связана с переносной скоростью зарядов υ → . Модуль этой сторонней силы равен:

F Л = e υ → B .

Работа силы F Л на пути l равна:

A = F Л · l = e υ B l .

По определению ЭДС:

δ и н д = A e = υ B l .

Значение сторонней силы для неподвижных частей контура равно нулю. Для соотношения δ и н д можно записать другой вариант формулы. Площадь контура с течением времени изменяется на Δ S = l υ Δ t . Соответственно, магнитный поток тоже будет с течением времени изменяться: Δ Φ = B l υ Δ t .

Следовательно,

δ и н д = ∆ Φ ∆ t .

Знаки в формуле, которая связывает δ и н д и ∆ Φ ∆ t , можно установить в зависимости от того, какие направления нормали и направления контура будут выбраны. В случае выбора согласованных между собой по правилу правого буравчика направлений нормали n → и положительного направления обхода контура l → можно прийти к формуле Фарадея.

При условии, что сопротивление всей цепи – это R , то по ней будет протекать индукционный ток, который равен I и н д = δ и н д R . За время Δ t на сопротивлении R выделится джоулево тепло:

∆ Q = R I и н д 2 ∆ t = υ 2 B 2 l 2 R ∆ t

Парадокса здесь нет. Мы просто не учли воздействие на систему еще одной силы. Объяснение заключается в том, что при протекании индукционного тока по проводнику, расположенному в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, которая связана с относительной скоростью движения зарядов вдоль проводника. Благодаря этой составляющей появляется сила Ампера F А → .

Для рассмотренного выше примера модуль силы Ампера равен F A = I B l . Направление силы Ампера таково, что она совершает отрицательную механическую работу A м е х. Вычислить эту механическую работу за определенный период времени можно по формуле:

A м е х = - F υ ∆ t = - I B l υ ∆ t = - υ 2 B 2 l 2 R ∆ t

Проводник, перемещающийся в магнитном поле, испытывает магнитное торможение. Это приводит к тому, что полная работа силы Лоренца равна нулю. Джоулево тепло может выделяться либо за счет уменьшения кинетической энергии движущегося проводника, либо за счет энергии, которая поддерживает скорость перемещения проводника в пространстве.

Изменение магнитного поля при неподвижном контуре

Определение 3

Вихревое электрическое поле – это электрическое поле, которое вызывается изменяющимся магнитным полем.

В отличие от потенциального электрического поля работа вихревого электрического поля при перемещении единичного положительного заряда по замкнутому проводящему контуру равна δ и н д в неподвижном проводнике.

В неподвижном проводнике электроны могут приводиться в движение только под действием электрического поля. А возникновение δ и н д нельзя объяснить действием силы Лоренца.

Первым, кто ввел понятие вихревого электрического поля, был английский физик Джон Максвелл. Случилось это в 1861 году.

Фактически, явления индукции в подвижных и неподвижных проводниках протекают одинаково. Так что в этом случае мы тоже можем использовать формулу Фарадея. Отличия касаются физической причины возникновения индукционного тока: в движущихся проводниках δ и н д обусловлена силой Лоренца, в неподвижных – действием на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Рисунок 1 . 20 . 4 . Модель электромагнитной индукции

Рисунок 1 . 20 . 5 . Модель опытов Фарадея

Рисунок 1 . 20 . 6 . Модель генератора переменного тока

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

Эффектной демонстрацией правила Ленца является опыт Элиу Томсона .

Энциклопедичный YouTube

    1 / 3

    Правило Ленца от bezbotvy

    Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

    Правило Ленца. Физика

    Субтитры

Физическая суть правила

E i n d = − d Φ d t {\displaystyle {\mathcal {E}}^{ind}=-{\frac {d\Phi }{dt}}}

где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.

Правило Ленца носит обобщённый характер и справедливо в различных физических ситуациях, которые могут отличаться конкретным физическим механизмом возбуждения индукционного тока. Так, если изменение магнитного потока вызвано изменением площади контура (например, за счёт движения одной из сторон прямоугольного контура), то индукционный ток возбуждается силой Лоренца, действующей на электроны перемещаемого проводника в постоянном магнитном поле. Если же изменение магнитного потока связано с изменением величины внешнего магнитного поля, то индукционный ток возбуждается вихревым электрическим полем, появляющимся при изменении магнитного поля. Однако в обоих случаях индукционный ток направлен так, чтобы скомпенсировать изменение потока магнитного поля через контур.

Если внешнее магнитное поле, пронизывающее неподвижный электрический контур, создаётся током, текущим в другом контуре, то индукционный ток может оказаться направлен как в том же направлении, что и внешний, так и в противоположном: это зависит от того, уменьшается или увеличивается внешний ток. Если внешний ток увеличивается, то растёт создаваемое им магнитное поле и его поток, что приводит к появлению индукционного тока, уменьшающего это увеличение. В этом случае индукционный ток направлен в сторону, противоположную основному. В обратном случае, когда внешний ток уменьшается со временем, уменьшение магнитного потока приводит к возбуждению индукционного тока, стремящегося увеличить поток, и этот ток направлен в ту же сторону, что и внешний ток.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то