Прямой пьезоэлектрический эффект. Пьезоэлектрический эффект и его применение в технике

Пьезоэлектрический эффект (греч. piezo — давлю и электричество) — явление, характеризующее возникновение электрической поляризации (индукции) под действием механических напряжений или возникновение деформации под действием электрического поля в некоторых веществах (пьезокристаллах). Если пьезоэлектрическую пластину, вырезанную определенным образом, подвергнуть действию механических напряжений (сжатию, растяжению, сдвигу), то на ее поверхности появляются электрические заряды, обусловленные поляризацией, — это так называемый прямой пьезоэффект; при внесении такой пластинки в электрическое поле возникает ее деформация, линейно зависящая от напряженности электрического поля, — обратный пьезоэффект.
Механизм прямого пьезоэффекта объясняется возникновением или изменением дипольного момента элементарной ячейки кристаллической решетки в результате смещения зарядов под действием механических напряжений. При действии электрического поля на элементарные заряды в ячейке приходит их смещение и как следствие изменение средних расстояний между ними, т.е. деформация (обратный пьезоэффект).
Пьезоэлектрический эффект был открыт в 1880 г. братьями П. и Ж. Кюри, наблюдавшими его у кварца и некоторых других кристаллов.
Необходимое условие существования пьезоэлектрического эффекта — отсутствие у кристалла центра симметрии. Только в этом случае приложение напряжений может привести к появлению нескомпенсированного электрического заряда, т.е. к возникновению поляризации. Пьезоэлектриками являются кварц, турмалин, сенгетова соль, титанат бария, дигидрофосфат калия, сульфоиодид сурьмы, сульфид калия и др. Он присущ также костям человека.
Принцип прямого пьезоэлектрического эффекта используется при изготовлении приемников ультразвуковых колебаний. Обратный пьезоэлектрический эффект служит для получения ультразвука, и все терапевтические ультразвуковые аппараты основаны на этом эффекте. Суть получения ультразвука заключается в следующем. Если к торцевым поверхностям пластинки из пьезокристалла, вырезанной определенным образом, с помощью электродов приложить переменное электрическое напряжение, то толщина ее будет поочередно уменьшаться в соответствии с частотой переменного тока. При уменьшении толщины пластинки в прилагающих слоях окружающей среды образуется разрежение, а при ее увеличении сгущение частиц среды. В результате периодического изменения толщины пластинки, называемой пьезоэлектрическим преобразователем, в среде возникает ультразвуковая волна, распространяющаяся в направлении, перпендикулярном поверхности пластинки. Изменение толщины пластинок из пьезокристаллов весьма невелико, оно пропорционально подводимому электрическому напряжению: AS = L U, где AS — изменение размеров пластинки: L пьезоэлектрический модуль: U — подводимое напряжение.
С целью повышения интенсивности ультразвуковых колебаний используется явление резонанса, что требует учета частоты собственных колебаний вещества. Если частота переменного напряжения, подаваемого на пьезокристалл, совпадает с его собственной (резонансной) частотой, то амплитуда колебаний пластинки будет наибольшей. Соответственно, окажется максимальной и интенсивность ультразвуковых волн, распространяющихся в окружающую среду. В свою очередь, резонансная частота пластинки зависит от ее размеров: чем тоньше пластинка, тем больше ее резонансная частота. Например, для пластинки из кварца толщиной 1 мм резонансная частота соответствует 2,88 МГц, а при толщине 0,5 мм — 5,76 МГц.
Раньше в ультразвуковых терапевтических аппаратах в качестве пьезоэлемента использовали кварцевые пластинки. Сегодня его заменяют керамикой из титаната бария, у которой пьезоэлектрический эффект во много раз выше.

В 1756 г. русский академик Ф. Эпинус обнаружил, что при нагревании кристалла турмалина на его гранях появляются электростатические заряды. В дальнейшем атому явлению было присвоено наименование пироэлектрического эффекта. Ф.Эпинус предполагал, что причиной электрических явлений, наблюдаемых при изменении температуры, является неравномерный нагрев двух поверхностей, приводящий к появлению в кристалле механических напряжений. Одновременно он указал, что постоянство в распределении полюсов на определенных концах кристалла зависит от его структуры и состава, таким образом Ф. Эпинус подошел вплотную к открытию пьезоэлектрического эффекта.

Пьезоэлектрический эффект в кристаллах был обнаружен в 1880 г. братьями П. и Ж. Кюри, наблюдавшими возникновение на поверхности пластинок, вырезанных в определенной ориентировке из кристалла кварца, электростатических зарядов под действием механических напряжений. Эти заряды пропорциональны механическому напряжению, меняют знак вместе с ним и исчезают при его снятии. Образование электростатических зарядов на поверхности диэлектрика и возникновение электрической поляризации внутри него в результате воздействия механического напряжения называют прямым пьезоэлектрическим эффектом.

Наряду с прямым существует обратный пьезоэлектрический эффект, заключающийся в том, что в пластине, вырезанной из пьезоэлектрического кристалла, возникает механическая деформация под действием приложенного к ней электрического поля; причем величина механической деформации пропорциональна напряженности электрического поля. Обратный пьезоэлектрический эффект не следует смешивать е явлением электрострикции, т. е. с деформацией диэлектрика под действием электрического поля. При электрострикции между деформацией и полем существует квадратичная зависимость, а при пьезоэффекте -- линейна.

Кроме того, электрострикция возникает у диэлектрика любой структуру и происходит даже в жидкостях и газах, в то время, как пьезоэлектрический эффект наблюдается только в твердых диэлектриках, главным образом, кристаллических.

Пьезоэлектричество появляется только в тех случаях, когда упругая деформация кристалла сопровождается смещением центров тяжести положительных и отрицательных зарядов элементарной ячейки кристалла, т, е. когда она вызывает индуцированный дипольный момент, который необходим для возникновения электрической поляризации диэлектрика под действием механического напряжения. В структурах, имеющих центр симметрии, никакая однородная деформация не сможет нарушить внутреннее равновесие кристаллической решетки и, следовательно, пьезоэлектрическими являются только 20 классов, у которых отсутствует центр симметрии. Отсутствие центра симметрии является необходимым, но не достаточным условием существования пьезоэлектрического эффекта, и поэтому не все ацентричные кристаллы обладают им.

Пьезоэлектрический эффект не может наблюдаться в твердых аморфных и скрытокристолических диэлектриках, так как это противоречит их сферической симметрии. Исключение составляют случаи, когда они становятся анизотропными под влиянием внешних сил и тем самым частично приобретают свойства одиночных кристаллов, Пьезоэффект возможен также в некоторых видах кристаллических текстур.

До сих пор пьезоэлектрический эффект не находит удовлетворительного количественного описания в рамках современной атомной теории кристаллической решетки. Даже для структур простейшего типа нельзя хотя бы приближенно вычислить порядок пьезоэлектрических постоянных.

Каждый пьезоэлектрик есть электромеханический преобразователь, поэтому важной его характеристикой является коэффициент электромеханической связи k. Квадрат этого коэффициента представляет собой отношение энергии, проявляющейся в механической форме для данного типа деформации, к полной электрической энергии, полученной на входе от источника питания.

Во многих случаях пьезоэлектриков существенными являются их упругие свойства, которые описываются модулями упругости с (модулями Юнга Ею) или обратными величинами -- упругими постоянными s.

При использовании пьезоэлектрических элементов в качестве резонаторов в некоторых случаях вводят частотный коэффициент, предстовляющий собой произведение резонансной частоты пьезоэлемента и геометрического размера, определяющего тип колебаний. Эта величина пропорциональна скорости звука в направлении распространения упругих волн в пьезоэлементе. В настоящее время известно много веществ (более 500), обнаруживших пьезоэлектрическую активность. Однако только немногие находят практическое применение.

2. Обратный пьезоэлектрический эффект.

Наряду с пьезоэлектрическим эффектом существует и обратное ему явление: в пьезоэлектрических кристаллах возникновение поляризации сопровождается механическими деформациями. Поэтому, если на металлические обкладки, укрепленные на кристалле, подать электрическое напряжение, то кристалл под действием поля поляризуется и деформируется.

Легко видеть, что необходимость существования обратного пьезоэффекта следует из закона сохранения энергии и факта существования прямого эффекта. Рассмотрим пьезоэлектрическую пластинку (рис. 5) и предположим, что мы сжимаем ее внешними силами F. Если бы пьезоэффекта не было, то работа внешних сил равнялась бы потенциальной энергии упруго деформированной пластинки. При наличии пьезоэффекта на пластинке появляются заряды и возникает электрическое поле, которое заключает в себе дополнительную энергию. По закону сохранения энергии отсюда следует, что при сжатии пьезоэлектрической пластинки совершается большая работа, а значит, в ней возникают дополнительные силы F1, противодействующие сжатию. Это и есть силы обратного пьезоэффекта. Из приведенных рассуждений вытекает связь между знаками обоих эффектов. Если в обоих случаях знаки зарядов на гранях одинаковы, то знаки деформаций различны. Если при сжатии пластинки на гранях появляются заряды, указанные на рис. 5, то при создании такой же поляризации внешним полем пластинка будет растягиваться.

Рис.5. Связь прямого и обратного пьезоэлектрических эффектов.

Обратный пьезоэлектрический эффект имеет внешнее сходство с электрострикцией. Однако оба эти явления различны. Пьезоэффект зависит от направления поля и при изменении направления последнего на противоположное изменяет знак. Электрострикция же не зависит от направления поля. Пьезоэффект наблюдается только в некоторых кристаллах, не обладающих центром симметрии. Электрострикция имеет место во всех диэлектриках как твердых, так и жидких.

Если пластинка закреплена и деформироваться не может, то при создании электрического поля в ней появится дополнительное механическое напряжение Его величина s пропорциональна напряженности электрического поля внутри кристалла:

где b - тот же пьезоэлектрический модуль, что и в случае прямого пьезоэффекта. Минус в этой формуле отражает указанное выше соотношение знаков прямого и обратного пьезоэффектов.

Полное механическое напряжение внутри кристалла складывается из напряжения, вызванного деформацией, и напряжения, возникшего под влиянием электрического поля. Оно равно:

Здесь С есть модуль упругости при деформации одностороннего растяжения (модуль Юнга) при постоянном электрическом поле. Формулы (51.2) и (52.2) являются основными соотношениями в теории пьезоэлектричества.

При написании формул мы выбирали u и Е в качестве независимых переменных и считали D и s их функциями. Это, конечно, необязательно, и мы могли бы считать независимыми переменными другую пару величин, одна из которых - механическая, а другая - электрическая. Тогда мы получили бы тоже два линейных соотношения между u, s, Е и D, но с другими коэффициентами. В зависимости от типа рассматриваемых задач удобны различные формы записи основных пьезоэлектрических соотношений.

Так как все пьезоэлектрические кристаллы анизотропны, то постоянные e, С и b зависят от ориентации граней пластинки относительно осей кристалла. Кроме того, они зависят от того, закреплены боковые грани пластинки или свободны (зависят от граничных условий при деформации). Чтобы дать представление о порядке величины этих постоянных мы приведем их значения для кварца в случае, когда пластинка вырезана перпендикулярно оси Х и ее боковые грани свободны:

e=4, 5; С=7, 8 1010 Н/м2; b=0, 18 Кл/м2.

Рассмотрим теперь пример применения основных соотношений (4) и (5) Положим, что кварцевая пластинка, вырезанная, как указано выше, растягивается вдоль оси X, причем обкладки, касающиеся граней, разомкнуты. Так как заряд обкладок до деформации был равен нулю, а кварц является диэлектриком, то и после деформации обкладки будут незаряженными. Согласно определению электрического смещения это значит, что D=0. Тогда из соотношения (4) следует, что при деформации внутри пластинки появится электрическое поле c напряженностью:

Подставляя это выражение в формулу (5), находим для механического напряжения в пластинке:

s=Cu-b(-(b/e0e)u)=C(1+(b2/e0eC))u (7)

Напряжение, как и в отсутствие пьезоэлектрического эффекта, пропорционально деформации. Однако упругие свойства пластинки теперь характеризуются эффективным модулем упругости

С" == С (1 + b2/e0eС). (8)

который больше С. Увеличение упругой жесткости вызвано появлением добавочного напряжения при обратном пьезоэффекте, препятствующего деформации. Влияние пьезоэлектрических свойств кристалла на его механические свойства характеризуется величиной: К2=b2/e0eC (9)

Квадратный корень из этой величины (К) называется константой электромеханической связи Пользуясь приведенными выше значениями e, С и b, находим, что для кварца К2~0.01 Для всех других известных пьезоэлектрических кристаллов К2 оказывает также малым по сравнению с единицей и не превышает 0, 1.

Оценим теперь величину пьезоэлектрического поля. Положим, что к граням кварцевой пластинки, перпендикулярным к оси X, приложено механическое напряжение 1 1055 Н/м2. Тогда, согласно (7), деформация будет равна u=1, 3 10-6. Подставляя это значение в формулу (6), получаем |E|==5900 В/м=59 В/см. При толщине пластинки, скажем, d==0, 5 см напряжение между обкладками будет равно U=Еd~30 В. Мы видим, что пьезоэлектрические поля и напряжения могут быть весьма значительными. Применяя вместо кварца более сильные пьезоэлектрики и используя должным образом выбранные типы деформации, можно получать пьезоэлектрические напряжения, измеряемые многими тысячами вольт.

Пьезоэлектрический эффект (прямой и обратный) широко применяется для устройства различных электромеханических преобразователей. Для этого иногда используют составные пьезоэлементы, предназначенные для осуществления деформаций разного типа.

На рис.6 показан двойной пьезоэлемент (составленный из двух пластинок), работающий на сжатие. Пластинки вырезаны из кристалла таким образом, что они одновременно либо сжимаются, либо растягиваются. Если, наоборот, сжимать или растягивать такой пьезоэлемент внешними силами, то между его обкладками появляется напряжение. Соединение пластинок в этом пьезоэлементе соответствует параллельному соединению конденсаторов.

Рис.6. Двойной пьезоэлемент, работающий на сжатие.


А также для метрологических целей. 3. Основные критерии оценки бесконтактных вибропреобразователей Для сравнения бесконтактных методов измерения параметров вибрации и основанных на них виброизмерительных преобразователей целесообразно пользоваться, помимо перечисленных параметров, следующими критериями оценки: характер физических полей или излучений, взаимодействующих в процессе измерений; ...

Т.е. для защиты источника от утечки информации, требуется нарушение энергетических и временных условий существования канала утечки путем использования различных по физическим принципам средств защиты. Технические характеристики акустопреобразовательного канала Акустоэлектрический преобразователь-устройство, преобразующее электромагнитную энергию в энергию упругих волн в среде и обратно. В...

Сырьевой смеси и снижает устойчивость их кристаллических решеток и, следовательно, ускоряет процесс образования материала. Исследование влияния добавок никеля и меди на плотность пьезокерамических заготовок представлены на рис. 2. Результаты измерения плотности показывают, что у легированной керамики плотность выше при всех температурах обжига. Так у керамики с добавкой меди плотность уже при...

ТЕХНИКА УЛЬТРААКУСТИКИ

Имеются многочисленные кристаллы, на поверхности которых при деформациях возникают электрические заряды. Такие кристаллы называются пьезоэлектриками. Возникающие при деформации поверхностные заряды имеют различные знаки на различных частях поверхности. К числу пьезоэлектриков относят кварц, турмалин, сегнетовую соль и многие другие.

Пьезоэлектрическими свойствами обладают только ионные кристаллы. Под действием внешних сил кристаллическая подрешетка из положительных ионов деформируется иначе, чем кристаллическая подрешетка из отрицательных ионов. В результате происходит относительное смещение положительных и отрицательных ионов, приводящее к возникновению поляризации кристалла и поверхностных зарядов. Поляризованность в первом приближении прямо пропорциональна деформации, а деформация кристалла, в свою очередь, прямо пропорциональна силе. Следовательно, поляризованность прямо пропорциональна приложенной силе.


На рис. 6.1 качественно поясняется возникновение прямого и обратного пьезоэлектрического эффекта в кварце.

Между разноименно заряженными гранями деформированного диэлектрика возникает разность потенциалов, которую можно измерить, а по ее значению сделать заключение о величине деформаций и приложенных силах, что находит многочисленные практические применения. Например, имеются пьезоэлектрические датчики для измерения быстропеременных давлений. Известны пьезоэлектрические микрофоны, пьезоэлектрические датчики в автоматике и телемеханике и т.д.

Прямой пьезоэффект

Помимо прямого пьезоэффекта в пьезоэлектриках существует обратный пьезоэффект. Он состоит в том, что во внешнем электрическом поле пьезоэлектрик деформируется. Его существование следует из наличия прямого эффекта и закона сохранения энергии. При деформировании пьезоэлектрика работа затрачивается на образование энергии упругой деформации и энергии возникающего при этом в результате пьезоэффекта электрического поля. Следовательно, при деформировании пьезоэлектрика необходимо преодолевать дополнительную силу, кроме силы упругости кристалла, которая препятствует деформации и является фактором, обусловливающим обратный пьезоэффект. Чтобы компенсировать дополнительную силу, надо приложить внешнее электрическое поле, противоположное тому, которое возникает в пьезоэффекте. Таким образом, для получения некоторой деформации пьезоэлектрика под влиянием внешнего электрического поля необходимо, чтобы оно было равно, но противоположно направлено тому полю, которое при данной деформации возникает в результате прямого пьезоэлектрического эффекта. Механизм обратного пьезоэлектрического эффекта аналогичен механизму прямого пьезоэффекта. Под действием внешнего электрического поля кристаллические подрешетки положительных и отрицательных ионов деформируются различным образом, что и приводит к деформации кристалла.



Обратный пьезоэлектрический эффект также имеет многочисленные практические применения, в частности широкое применение получили кварцевые излучатели ультразвука.

Обратный пьезоэффект:

Так, для кварцевой пластинки (Х-срез), совершающей колебания по толщине, резонансная частота (основная гармоника) может быть получена по формуле

где – толщина пластинки, выраженная в см.

Пьезоэлектрический эффект был открыт братьями Кюри в 1880г. Пьезоэффект бывает прямой и обратный.

Прямой пьезоэффект – это процесс образования равных, но противоположных по знаку электрических зарядов на противоположных гранях некоторых кристаллических тел, называемых пьезоэлектриками, при давлении на эти тела.

Если изменить направление деформации, т.е. не сжимать, а растягивать пьезоэлектрик, то заряды на гранях изменят знак на обратный. К пьезоэлектрикам относятся кварц, сегнетова соль, титанат бария и т.д.

Обратный пьезоэффект – это процесс сжатия или расширения пьезоэлектрика под действием электрического поля в зависимости от направления вектора напряженности поля.

Для практических целей применяют пьезоэлектрики различной формы: прямоугольные или круглые пластинки, цилиндры, кольца. Пьезоэлемент помещают между металлическими обкладками или наносят металлические пленки на противоположные грани пьезоэлемента. Таким образом получается конденсатор с диэлектриком из пьезоэлектрика.

Если к такому пьезоэлементу подвести переменное напряжение, то пьезоэлемент за счет обратного пьезоэффекта будет сжиматься и расширяться, т.е. совершать механические колебания. В этом случае энергия электрических колебаний превращается в энергию механических колебаний с частотой, равной частоте приложенного переменного напряжения. Так как пьезоэлемент обладает собственной частотой механических колебаний, то возможно явление резонанса, когда частота приложенного напряжения совпадает с собственной частотой колебаний пластинки. При этом получается максимальная амплитуда колебаний пластинки пьезоэлемента.

Если на пьезоэлемент воздействовать механически с некоторой частотой, то возникает переменное напряжение той же частоты. В этом случае механическая энергия преобразуется в электрическую, и пьезоэлемент становится генератором переменной ЭДС. Таким образом, можно сказать, что пьезоэлемент является колебательной системой с электромеханическими колебаниями.

На основе пьезоэффекта работает кварцевый резонатор, содержащий кварцевый элемент, электроды и кварцедержатели, помещенные в герметичный металлический или стеклянный баллон.

Эквивалентная схема кварцевого резонатора:

Кварцевые резонаторы успешно работают в полосе частот от 70 Гц до десятков МГц. На их основе работают кварцевые генераторы, обеспечивающие высокую точность и стабильность частоты.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то