Шлейден вклад в развитие биологии. Клеточная теория

В 1838 - 1839 гг. два немецких ученых - ботаник М. Шлейден и зоолог Т. Шванн, собрали все доступные им сведения и наблюдения в единую теорию, утверждавшую, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ.

Спустя примерно 20 лет после провозглашения Шлейденом и Шванном клеточной теории другой немецкий ученый - врач Р. Вирхов сделал очень важное обобщение: клетка может возникнуть только из предшествующей клетки. Академик Российской Академии наук Карл Бэр открыл яйцеклетку млекопитающих и установил, что все многоклеточные организмы начинают свое развитие из одной клетки и этой клеткой является зигота.

Современная клеточная теория включает следующие основные положения:

Клетка - основная единица строения и развития всех живых организмов, наименьшая единица живого.

Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

Размножение клеток происходит путем их деления, т.е. каждая новая клетка образуется в результате деления исходной (материнской) клетки. Положения о генетической непрерывности относятся не только к клетке в целом, но и к некоторым из ее более мелких компонентов - к генам и хромосомам, а также к генетическому механизму, обеспечивающему передачу вещества наследственности следующему поколению,

В сложных многоклеточных организмах клетки специализированы по выполняемой им функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

3 Типы существующих клеток и их общая структура.

Все клетки делят на две общие группы: -- одну группу составляют бактерии и цианобактерии, которых называют доядерными (прокариотическими), так как у них нет оформленного ядра и некоторых других органоидов; -- другую группу (их большинство) составляютэукариоты , клетки которых содержат ядра и различные органоиды, выполняющие специфические функции. (см. Классификацию живых организмов по Маргелису и Шварцу (Рисунок 2)

Прокариотическая клетка - самая простая и, судя по данным палеонтологической летописи, это, вероятно, первая клетка, возникшая 3-3,5 млрд лет тому назад. Она имеет малые размеры (например, клетки микоплазмы достигают 0,10-0,25 мкм).

Эукариотическая клетка организована гораздо сложнее прокариотической. Из эукариотических клеток в данном курсе изучаются животная и растительная клетки,клетка плесени и клетка дрожжей. Представителями прокариотов является бактериальная клетка.

Таблица 1. Сопоставление некоторых черт прокариотной и эукариотной клеточной организации

Признак Прокариотная клетка Эукариотная клетка
Организация генетического материала нуклеоид (ДНК не отделена от цитоплазмы мембраной), состоящий из одной хромосомы; митоз отсутствует ядро (ДНК отделена от цитоплазмы ядерной оболочкой), содержащее больше одной хромосомы; деление ядра путем митоза
Локализация ДНК в нуклеоиде и плазмидах, не ограниченных элементарной мембраной в ядре и некоторых органеллах
Цитоплазматически органеллы отсутствуют имеются
Рибосомы в цитоплазме 70S-типа 80S-типа
Цитоплазматические органеллы отсутствуют имеются
Движение цитоплазмы отсутствует часто обнаруживается
Клеточная стенка (там, где она имеется) в большинстве случаев содержит пептидогликан пептидогликан отсутствует
Жгутики нить жгутика построена из белковых субъединиц, образующих спираль каждый жгутик содержит набор микротрубочек, собранны в группы: 2·9-2

Клетка эукариотов состоит из трех неразрывно связанных между собой частей: плазматической мембраны (плазмалеммы), цитоплазмы и ядра. У растительной клетки поверх мембраны имеется наружная стенка из целлюлозы и других материалов, выполняющих важную роль, которая представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток, пропускает воду, соли, молекулы многих органических веществ. У большинства клеток (особенно животных) наружная сторона мембраны покрыта слоем полисахаридов и гликопротеидов (гликокаликс). Гликокаликс - очень тонкий, эластичный слой (в световой микроскоп не виден). Он, как и целлюлозная стенка растений, осуществляет прежде всего функцию непосредственной связи клеток с внешней средой, однако, он не обладает опорной функцией, как у стенки растительной клетки. Отдельные участки мембраны и гликокаликса могут дифференцироваться и превращаться в микроворсинки (обычно на поверхности клетки, которая контактирует с окружающей средой), межклеточные соединения и связи, находящиеся между клетками ткани и имеющими различную структуру. Одни из них играют механическую роль (межкле-точные соединения), а другие участвуют в межклеточных обменных процессах, изменяя электрический потенциал мембраны. Итак, каждая клетка состоит из цитоплазмы и ядра, снаружи она покрыта мембраной (плазмолеммой), разграничивающей одну клетку от соседних. Пространство между мембранами соседних клеток заполнено жидким межклеточным веществом.

Между клетками растений и животных нет принципи­альных различий по структуре и функциям. Некоторые отличия касаются лишь строения их мембран, клеточных стенок и отдельных органелл. На рисунке можно легко обнаружить отличия животной и растительной клеток

Как бы ни были сходны животная и растительная клетки –между ними имеются значительные отличия. Основным отличием является отсутствие в растительной клетке клеточного центра с центриолями, который имеется в животной клетке и вакуолей с водой, которые занимают Существенным отличием названных клеток является присутствие в растительной клетке хлоропластов, которые обеспечивают фотосинтез растений и другие функции.

достаточно большое пространство в клетке и обеспечивают этим тургор растений.

Рисунок 25 – Отличия животной и растительной клетки

В таблице 2 представлены отличительные признаки растительных и животных клеток.

4 Строение биологических мембран.

Основной компонент мембран – фосфолипиды - образуются при присоединении к глицерину вместо третьей жирной кислоты – фосфорной кислоты


Рисунок 3 – Липид (схематичное изображение)

Жирные кислоты представляют из себя длинную или короткую цепочку из атомов углерода и водорода, иногда содержащие двойные связи. Они обладают выраженными гидрофобными свойствами.

Рисунок 4 - Схема жирных кислот

Фосфолипиды, являясь по своей химической структуре сложным эфиром многоатомных спиртов с жирными кислотами содержат в качестве добавочных структурных элементов остаток фосфорной кислоты и гидрофильное основание. Головка фосфолипида, включая кроме остатка спирта -глицерида, остаток фосфорной кислоты и основание, обладает выраженными гидрофильными свойствами.

В силу выраженной полярности, фосфолипиды в воде образуют структуру, представленную на рисунке 5.

Рисунок 5 - Капля жира в воде (А) и фосфолипидный бислой мембран (В)

Липиды и белки. В основе мембраны лежит двойной слой липидов и фосфолипидов. Хвосты молекул обращены в двойном слое друг к другу, а полярные головки остаются снаружи, образуя гидрофильные поверхности.

Молекулы белков не образуют сплошного слоя, (рисунок 6) они располагаются в слое липидов, погружаясь на разную глубину (есть периферические белки, часть белков пронизывает мембрану насквозь, часть погружена в слой липидов) и выполняя различные функции. Молекулы белков и липидов подвижны, что обеспечивает динамичность плазматической мембраны.

Гликолипиды и холестерол. В мембранах содержатся также гликолипиды и холестерол. Гликолипиды - это липиды с присоединенными к ним углеводами. Как и у фосфолипидов, у гликолипидов имеются полярные головы и неполярные хвосты. Холестерол близок к липидам; в его молекуле также имеется полярная часть.

Гидрофильная головка фосфолипида

Гидрофобный хвост фосфолипида

Рисунок 6 - Схема фосфолипидного слоя мембраны с встроенными белками.

В 1972 г. Сингер и Николсон предложилижидкостно-мозаичную модель мембраны (рисунок 7), согласно которой белковые молекулы плавают в жидком фосфолипидном бислое. Они образуют в нем как бы своеобразную мозаику, но поскольку бислой этот жидкий, то и сам мозаичный узор не жестко фиксирован; белки могут менять в нем свое положение. Покрывающая клетку тонкая мембрана напоминает пленку мыльного пузыря - она тоже все время «переливается». Ниже суммированы известные данные, касающиеся строения и свойств клеточных мембран.

Рисунок 7 - А. Трехмерное изображение жидкостно-мозаичной модели мембраны. Б. Плосткостное изображение. Гликопротеины и гликолипиды связаны только с наружной поверхностью мембраны.

1. Толщина мембран составляет около 7 нм.

2. Основная структура мембраны - фосфолипидный бислой.

3. Гидрофильные головы фосфолипидных молекул обращены наружу - в сторону водного содержимого клетки и в сторону наружной водной среды.

4. Гидрофобные хвосты обращены внутрь - они образуют гидрофобную внутреннюю часть бислоя.

5. Фосфолипиды находятся в жидком состоянии и быстро диффундируют внутри бислоя.

6. Жирные кислоты, образующие хвосты фосфолипидных молекул, бывают насы­щенными и ненасыщенными. В ненасыщенных кислотах имеются изломы, что делает упаковку бислоя более рыхлой. Следовательно, чем больше степень ненасыщенности, тем более жидкую консистенцию имеет мембрана.

7. Большая часть белков плавает в жидком фосфолипидном бислое, образуя в нем своеобразную мозаику, постоянно меняющую свой узор.

8. Белки сохраняют связь с мембраной, поскольку в них есть участки, состоящие из гидрофобных аминокислот, взаимодействующих с гидрофобными хвостами фосфолипидов: то есть – они склеиваются, а вода из этих мест выталкивается. Другие участки белков гидрофильны. Они обращены либо к окружению клетки, либо к ее содержимому, т. е. к водной среде.

9. Некоторые мембранные белки лишь частично погружены в фосфолипидный бислой, тогда как другие пронизывают его насквозь.

10. К некоторым белкам и липидам присоединены разветвленные олигосахаридные цепочки, играющие роль антенн. Такие соединения называются соответственно гликопротеинами и гликолипидами.

11. В мембранах содержится также холестерол. Подобно ненасыщенным жирным кислотам он нарушает плотную упаковку фосфолипидов и делает их более жидкими. Это важно для организмов, живущих в холодной среде, где мембраны могли бы затвердевать. Холестерол делает мембраны также более гибкими и вместе с тем более прочными. Без него они бы легко разрывались.

12. Две стороны мембраны, наружная и внутренняя, различаются и по составу, и по функциям.

Фосфолипидный бислой, как уже было сказано, составляет основу структуры мембраны. Он также ограничивает проникновение полярных молекул и ионов в клетку и выход их из нее. Ряд функций выполняют и другие компоненты мембран.

5 Функции биологических мембран. Транспорт через мембрану

Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают отделение клеток от окружающей среды. Помимо мембран общего назначения в клетках существуют внутренние мембраны, которые ограничивают клеточные органеллы.

Регулируя обмен между клеткой и средой, мембраны обладают рецепторами, которые воспринимают внешние стимулы. В частности, примерами восприятия внешних стимулов являются восприятие света, движение бактерий к источнику пищи, ответ клеток-мишеней на гормоны, например, на инсулин. Некоторые из мембран одновременно сами генерируют сигналы (химические и электрические). Замечательной особенностью мембран является то, что на них происходит превращение энергии. В частности, на внутренних мембранах хлоропластов происходит фотосинтез, а на внутренних мембранах митохондрий осуществляется окислительное фосфорилирование .

Компоненты мембран находятся в движении. Построенным, главным образом из белков и липидов, мембранам присущи различные перестройки, что определяет раздражимость клеток – важнейшее свойство живого.

С конца прошлого века известно, что клеточные мембраны ведут себя не так, как полупроницаемые мембраны, способные пропускать лишь воду и другие малые молекулы, например молекулы газов. Клеточные мембраны обладаютизбирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жир­ные кислоты, глицерол и ионы, причем сами мембраны активно регулируют этот процесс - одни вещества пропускают, а другие нет.


В родном городе он окончил гимназию, а в 1824 г. поступил на юридический факультет Гейдельбергского университета, намереваясь посвятить себя адвокатской деятельности. Несмотря на то, что учебу закончил с отличием, юристом он не стал.

Затем в Геттингенском университете Шлейден изучал философию и медицину. В конце концов, он заинтересовался биологическими науками, посвятив себя физиологии и ботанике. Первый труд о растениях он опубликовал в возрасте 33 лет.

В 1837 Шлейден предложил новую теорию образования растительных клеток, основанную на представлении о решающей роли в этом процессе клеточного ядра. Он полагал, что новая клетка как бы выдувается из ядра и затем покрывается клеточной стенкой. Несмотря на свою ошибочность, эта теория имела положительное значение, т.к. привлекла внимание исследователей к изучению строения клетки и ядра.

Именно тогда совместно с зоологом Теодором Шванном Шлейден занялся микроскопическими исследованиями, которые привели ученых к разработке клеточной теории строения организмов.

В 1839 г. в Иенском университете Шлейден получил степень доктора философии.

Степень доктора медицины он получил в 1843 г. в Тюбингенском университете, а с 1863 г. состоял профессором фитохимии (науки о химических процессах в живых растениях) и антропологии в Дерпте, а также вел научную работу в Дрездене, Висбадене и Франкфурте.

С 1840 по 1862 г. был профессором ботаники в Йене, в 1863 г. был приглашен читать антропологию и растительную химию в Дерпте, но уже в 1864 г. отказался от этой должности и жил большей частью в Дрездене и Висбадене. Блестяще и многосторонне образованный, превосходно владевший пером, беспощадный в критике и полемике, кантианец Шлейден восстал против господствовавших тогда в ботанике направлений, узкого систематически-номенклатурного и спекулятивного, натурфилософского. Представителей 1-го направления он называл собирателями сена и не меньше критиковал ни на чем не основанные фантазии натурфилософов. Шлейден требует, чтобы ботаника стояла на той же высоте, как физика и химия, метод ее должен быть индуктивный, с натурфилософскими измышлениями она не должна иметь ничего общего; в основание морфологии растений должно быть положено изучение истории развития форм и органов, их генезиса и метаморфоз, а не простое перечисление органов явнобрачных растений; естественная система растений будет правильно понята лишь тогда, когда будут изучаться не только высшие растения, но и, главным образом, низшие (водоросли и грибы). Обе эти идеи Шлейдена быстро распространились среди ботаников и принесли благотворнейшие результаты. Шлейден - один из главнейших ботанических реформаторов и основателей новой (научной) ботаники. В своих трудах он блестяще опроверг старое направление и представил для ботаники столько задач, что их можно было решить не одному человеку, а целому поколению наблюдателей и мыслителей. Способности Шлейдена, как писателя, содействовали успеху его популярных сочинений, некоторые из которых выдержали несколько изданий и были переведены на русский язык: «Die Pflanze und Ihr Leben» (1 изд., Лейпциг, 1847; русский перевод «Растение и его жизнь»); «Studien» (русский перевод «Этюды», 1860); «Das meer» (русский перевод «Море», 1867); «Für Baum und Wald» (1870, русский перевод «Дерево и лес»); «Die Rose» (1873); «Das Salz» (1875) и т. д.

Будучи прогрессивным ученым, Шлейден принимал активное участие в общественной жизни. Он опубликовал много научно-популярных работ. Известны работы Шлейдена о развитии и дифференцировке клеточных структур высших растений. В 1842 он впервые обнаружил ядрышки в ядре. Среди наиболее известных трудов ученого - книга «Основы ботаники» («Grundzge der Botanik», 1842-1843), ознаменовавшая собой появление современной научной ботаники. Именно Шлейден, благодаря своим открытиям в области физиологии растений, положил начало дискуссии между биологами, продолжавшейся свыше 20 лет.
Ученые не хотели признавать справедливость взглядов Шлейдена. В качестве аргумента против представленных им фактов был выдвинут упрек, что его прежние работы по ботанике содержали ошибки и не давали убедительных доказательств теоретических обобщений. Шлейден опубликовал ряд трудов по физиологии и анатомии растений. В книге «Данные о фитогенезе» в разделе о происхождении растений Шлейден представил свою теорию возникновения потомства клеток из материнской клетки. Работа Шлейдена подтолкнула Теодора Шванна заняться длительными и тщательными микроскопическими исследованиями, которые доказали единство клеточного строения всего органического мира. Труд ученого под заглавием «Растение и его жизнь» был опубликован в 1850 г. в Лейпциге.

Главный труд Шлейдена «Основы научной ботаники в двух томах» был опубликован в 1842-1843 г. в Лейпциге и оказал огромное влияние на реформу морфологии растений на основе онтогенеза. Онтогенез различает в развитии отдельного организма три периода:
образование половых клеток, т.е. доэмбриональный период, ограничивающийся образованием яйцеклеток и сперматозоидов;
эмбриональный период – от начала деления яйцеклетки до рождения индивида;
послеродовой период – от рождения индивида до его смерти.
В конце своей жизни Шлейден оставил ботанику и занялся антропологией, т.е. наукой о различиях во внешнем виде, строении и деятельности организмов отдельных человеческих групп во времени и пространстве.

Маттиас Шлейден вклад в биологию совершил значимый. Он считается реформатором ботаники.

Маттиас Шлейден вклад в биологию кратко

Маттиас Якоб Шлейден известен в науке как один из авторов клеточной теории. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838-1839 г.).
Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Основные труды Шлейдена - по эмбриологии и анатомии растений.

Шлейден использовал и обосновывал онтогенетический способ изучения морфологии растений и был его активным пропагандистом.

Шлейден считался одним из предшественников и сторонников дарвинизма.

Основное направление научных исследований Шлейдена – цитология и физиология растений. В 1837 Шлейден предложил новую теорию образования растительных клеток, основанную на представлении о решающей роли в этом процессе клеточного ядра. Ученый полагал, что новая клетка как бы выдувается из ядра и затем покрывается клеточной стенкой.

Шлейден Маттиас Якоб Шле́йден Маттиас Якоб

(Schleiden) (1804-1881), немецкий ботаник, основоположник онтогенетического метода в ботанике, иностранный член-корреспондент Петербургской АН (1850). В 1863-64 работал в России (профессор Дерптского университета). Основные труды по анатомии, морфологии и эмбриологии растений. Труды Шлейдена сыграли важную роль в обосновании Т. Шванном клеточной теории.

ШЛЕЙДЕН Маттиас Якоб

ШЛЕ́ЙДЕН (Schleiden) Маттиас Якоб (5 апреля 1804, Гамбург - 23 июня 1881, Франкфурт-на-Майне), немецкий ботаник, основоположник онтогенетического метода (см. ОНТОГЕНЕЗ) в ботанике. Иностранный член-корреспондент Петербургской АН (1850)
Родился в Гамбурге. В 1824 поступил на юридический факультет Гейдельбергского университета, намереваясь посвятить себя адвокатской деятельности. Несмотря на то что учебу закончил с отличием, юристом не стал. Затем изучал философию, медицину, ботанику в Геттингенском университете, университетах Берлина, Йены. Увлекшись биологическими науками, посвятил себя физиологии и ботанике.
В 1837 совместно с зоологом Теодором Шванном Шлейден занялся микроскопическими исследованиями, которые привели ученых к разработке клеточной теории (см. КЛЕТОЧНАЯ ТЕОРИЯ) строения организмов. Ученый считал, что решающую роль в образовании растительных клеток играет клеточное ядро – новая клетка как бы выдувается из ядра и затем покрывается клеточной стенкой. Свою научную работу ученый вел в Йенском университете (1832-1862), а также в Дерптском университете (1863 – 1864), затем работал в Дрездене, Висбадене, Франкфурте.
Благодаря своим открытиям в области физиологии растений, положил начало плодотворной дискуссии между биологами, продолжавшейся свыше 20 лет.
Ученые-коллеги, не желая признавать справедливость взглядов Шлейдена, упрекали его в том, что его прежние работы по ботанике содержали ошибки и не давали убедительных доказательств теоретических обобщений. Но Шлейден продолжал свои исследования.
В книге «Данные о фитогенезе» в разделе о происхождении растений он изложил свою теорию возникновения потомства клеток из материнской клетки. Работа Шлейдена подтолкнула его коллегу Т. Шванна (см. ШВАНН Теодор) заняться длительными и тщательными микроскопическими исследованиями, которые доказали единство клеточного строения всего органического мира. Труд Шлейдена под названием «Растение и его жизнь» оказал значительное влияние на развитие ботаники.
Главный труд Шлейдена «Основы научной ботаники» в двух томах, опубликованный в 1842-1843 гг. в Лейпциге, оказал огромное влияние на реформу морфологии растений на основе онтогенеза. Онтогенез различает в развитии отдельного организма три периода: образование половых клеток, т.е. доэмбриональный период, ограничивающийся образованием яйцеклеток и сперматозоидов; эмбриональный - от начала деления яйцеклетки до рождения индивида; послеродовой - от рождения индивида до его смерти.
В конце своей жизни Шлейден, оставив ботанику, занялся антропологией, он также автор научно-популярных книг и сборников стихов.


Энциклопедический словарь . 2009 .

Смотреть что такое "Шлейден Маттиас Якоб" в других словарях:

    Шлейден (Schleiden) Маттиас Якоб (5.4.1804, Гамбург, ‒ 23.6.1881, Франкфурт на Майне), немецкий ботаник и общественный деятель. Окончил Гейдельбергский университет (1827). Профессор ботаники в Йенском (1839‒62, с 1850 директор ботанического сада… … Большая советская энциклопедия

    - (Schleiden, Matthias Jakob) (1804 1881), немецкий ботаник. Родился 5 апреля 1804 в Гамбурге. Изучал право в Гейдельберге, ботанику и медицину в университетах Геттингена, Берлина и Йены. Профессор ботаники Йенского университета (1839 1862), с 1863 … Энциклопедия Кольера

    - (Schieiden) один из знаменитейших ботаников XIX столетия; род. в 1804 г. в Гамбурге, умер в 1881 г. во Франкфурте на Майне; изучал сначала юриспруденцию, был адвокатом, но с 1831 г. стал изучать естественные науки и медицину. С 1840 по 1862 г.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Якоб Маттиас Шлейден нем. Matthias Jakob Schleiden Шлейден (Schleiden) Маттиас Якоб Дата рождения: 5 апреля 1804 Место рождения: Гамбург Дата смерти … Википедия

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то