Углекислый газ температура. "Получение углекислого газа и его свойства"

Структурная формула

Истинная, эмпирическая, или брутто-формула: CO 2

Химический состав Углекислого газа

Молекулярная масса: 44.009

Диокси́д углеро́да (углеки́слый газ, двуо́кись углеро́да, окси́д углеро́да (IV), у́гольный ангидри́д) - бесцветный газ (в нормальных условиях), без запаха, с химической формулой CO 2 . Плотность при нормальных условиях 1,98 кг/м³ (тяжелее воздуха). При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения. Концентрация углекислого газа в атмосфере Земли составляет в среднем 0,04 %. Углекислый газ легко пропускает ультрафиолетовые лучи и лучи видимой части спектра, которые поступают на Землю от Солнца и обогревают её. В то же время он поглощает испускаемые Землёй инфракрасные лучи и является одним из парниковых газов, вследствие чего принимает участие в процессе глобального потепления. Постоянный рост уровня содержания этого газа в атмосфере наблюдается с начала индустриальной эпохи.

Оксид углерода(IV) - углекислый газ, газ без запаха и цвета, тяжелее воздуха, при сильном охлаждении кристаллизуется в виде белой снегообразной массы - «сухого льда». При атмосферном давлении он не плавится, а испаряется, температура сублимации −78 °С. Углекислый газ образуется при гниении и горении органических веществ. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и растений. Растворим в воде (1 объём углекислого газа в одном объёме воды при 15 °С).

По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту. Реагирует с щёлочами с образованием карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом) и нуклеофильного присоединения (например, с магнийорганическими соединениями). Оксид углерода(IV) не поддерживает горения. В нём горят только некоторые активные металлы. Взаимодействует с оксидами активных металлов. При растворении в воде образует угольную кислоту. Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов.

Организм человека выделяет приблизительно 1 кг (2,3 фунта) углекислого газа в сутки. Этот углекислый газ переносится от тканей, где он образуется в качестве одного из конечных продуктов метаболизма, по венозной системе и затем выделяется с выдыхаемым воздухом через лёгкие. Таким образом, содержание углекислого газа в крови велико в венозной системе, и уменьшается в капиллярной сети лёгких, и мало в артериальной крови. Содержание углекислого газа в пробе крови часто выражают в терминах парциального давления, то есть давления, которое бы имел содержащийся в пробе крови в данном количестве углекислый газ, если бы весь объём пробы крови занимал только он. Углекислый газ (CO 2 ) транспортируется в крови тремя различными способами (точное соотношение каждого из этих трёх способов транспортировки зависит от того, является ли кровь артериальной или венозной).

  • Большая часть углекислого газа (от 70 % до 80 %) преобразуется ферментом карбоангидразой эритроцитов в ионы гидрокарбоната.
  • Около 5 % - 10 % углекислого газа растворено в плазме крови.
  • Около 5 % - 10 % углекислого газа связано с гемоглобином в виде карбаминосоединений (карбогемоглобин).

Гемоглобин, основной кислород-транспортирующий белок эритроцитов крови, способен транспортировать как кислород, так и углекислый газ. Однако углекислый газ связывается с гемоглобином в ином месте, чем кислород. Он связывается с N-терминальными концами цепей глобина, а не с гемом. Однако благодаря аллостерическим эффектам, которые приводят к изменению конфигурации молекулы гемоглобина при связывании, связывание углекислого газа понижает способность кислорода к связыванию с ним же, при данном парциальном давлении кислорода, и наоборот - связывание кислорода с гемоглобином понижает способность углекислого газа к связыванию с ним же, при данном парциальном давлении углекислого газа. Помимо этого, способность гемоглобина к преимущественному связыванию с кислородом или с углекислым газом зависит также и от pH среды. Эти особенности очень важны для успешного захвата и транспорта кислорода из лёгких в ткани и его успешного высвобождения в тканях, а также для успешного захвата и транспорта углекислого газа из тканей в лёгкие и его высвобождения там. Углекислый газ является одним из важнейших медиаторов ауторегуляции кровотока. Он является мощным вазодилататором. Соответственно, если уровень углекислого газа в ткани или в крови повышается (например, вследствие интенсивного метаболизма - вызванного, скажем, физической нагрузкой, воспалением, повреждением тканей, или вследствие затруднения кровотока, ишемии ткани), то капилляры расширяются, что приводит к увеличению кровотока и соответственно к увеличению доставки к тканям кислорода и транспорта из тканей накопившейся углекислоты. Кроме того, углекислый газ в определённых концентрациях (повышенных, но ещё не достигающих токсических значений) оказывает положительное инотропное и хронотропное действие на миокард и повышает его чувствительность к адреналину, что приводит к увеличению силы и частоты сердечных сокращений, величины сердечного выброса и, как следствие, ударного и минутного объёма крови. Это также способствует коррекции тканевой гипоксии и гиперкапнии (повышенного уровня углекислоты). Ионы гидрокарбоната очень важны для регуляции pH крови и поддержания нормального кислотно-щелочного равновесия. Частота дыхания влияет на содержание углекислого газа в крови. Слабое или замедленное дыхание вызывает респираторный ацидоз, в то время как учащённое и чрезмерно глубокое дыхание приводит к гипервентиляции и развитию респираторного алкалоза. Кроме того, углекислый газ также важен в регуляции дыхания. Хотя наш организм требует кислорода для обеспечения метаболизма, низкое содержание кислорода в крови или в тканях обычно не стимулирует дыхание (вернее, стимулирующее влияние нехватки кислорода на дыхание слишком слабо и «включается» поздно, при очень низких уровнях кислорода в крови, при которых человек нередко уже теряет сознание). В норме дыхание стимулируется повышением уровня углекислого газа в крови. Дыхательный центр гораздо более чувствителен к повышению уровня углекислого газа, чем к нехватке кислорода. Как следствие этого, дыхание сильно разрежённым воздухом (с низким парциальным давлением кислорода) или газовой смесью, вообще не содержащей кислорода (например, 100 % азотом или 100 % закисью азота) может быстро привести к потере сознания без возникновения ощущения нехватки воздуха (поскольку уровень углекислоты в крови не повышается, ибо ничто не препятствует её выдыханию). Это особенно опасно для пилотов военных самолётов, летающих на больших высотах (в случае попадания вражеской ракеты в кабину самолёта и разгерметизации кабины пилоты могут быстро потерять сознание). Эта особенность системы регуляции дыхания также является причиной того, почему в самолётах стюардессы инструктируют пассажиров в случае разгерметизации салона самолёта в первую очередь надевать кислородную маску самим, прежде чем пытаться помочь кому-либо ещё - делая это, помогающий рискует быстро потерять сознание сам, причём даже не ощущая до последнего момента какого-либо дискомфорта и потребности в кислороде. Дыхательный центр человека пытается поддерживать парциальное давление углекислого газа в артериальной крови не выше 40 мм ртутного столба. При сознательной гипервентиляции содержание углекислого газа в артериальной крови может снизиться до 10-20 мм ртутного столба, при этом содержание кислорода в крови практически не изменится или увеличится незначительно, а потребность сделать очередной вдох уменьшится как следствие уменьшения стимулирующего влияния углекислого газа на активность дыхательного центра. Это является причиной того, почему после некоторого периода сознательной гипервентиляции легче задержать дыхание надолго, чем без предшествующей гипервентиляции. Такая сознательная гипервентиляция с последующей задержкой дыхания может привести к потере сознания до того, как человек ощутит потребность сделать вдох. В безопасной обстановке такая потеря сознания ничем особенным не грозит (потеряв сознание, человек потеряет и контроль над собой, перестанет задерживать дыхание и сделает вдох, дыхание, а вместе с ним и снабжение мозга кислородом восстановится, а затем восстановится и сознание). Однако в других ситуациях, например, перед нырянием, это может быть опасным (потеря сознания и потребность сделать вдох наступят на глубине, и в отсутствие сознательного контроля в дыхательные пути попадёт вода, что может привести к утоплению). Именно поэтому гипервентиляция перед нырянием опасна и не рекомендуется.

В промышленных количествах углекислота выделяется из дымовых газов, или как побочный продукт химических процессов, например, при разложении природных карбонатов (известняк, доломит) или при производстве алкоголя (спиртовое брожение). Смесь полученных газов промывают раствором карбоната калия, которые поглощают углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании или при пониженном давлении разлагается, высвобождая углекислоту. В современных установках получения углекислого газа вместо гидрокарбоната чаще применяется водный раствор моноэтаноламина, который при определённых условиях способен абсорбировать CO 2 , содержащийся в дымовом газе, а при нагреве отдавать его; таким образом отделяется готовый продукт от других веществ. Также углекислый газ получают на установках разделения воздуха как побочный продукт получения чистого кислорода, азота и аргона. В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора, мела или соды с соляной кислотой, используя, например, аппарат Киппа. Использование реакции серной кислоты с мелом или мрамором приводит к образованию малорастворимого сульфата кальция, который мешает реакции, и который удаляется значительным избытком кислоты. Для приготовления напитков может быть использована реакция пищевой соды с лимонной кислотой или с кислым лимонным соком. Именно в таком виде появились первые газированные напитки. Их изготовлением и продажей занимались аптекари.

В пищевой промышленности углекислота используется как консервант и разрыхлитель, обозначается на упаковке кодом Е290. Жидкая углекислота широко применяется в системах пожаротушения и в огнетушителях. Автоматические углекислотные установки для пожаротушения различаются по системам пуска, которые бывают пневматическими, механическими или электрическими. Устройство для подачи углекислого газа в аквариум может включать в себя резервуар с газом. Простейший и наиболее распространенный метод получения углекислого газа основан на конструкции для изготовления алкогольного напитка браги. При брожении, выделяемый углекислый газ вполне может обеспечить подкормку аквариумных растений. Углекислый газ используется для газирования лимонада и газированной воды. Углекислый газ используется также в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его диссоциация с выделением кислорода. Выделяющийся кислород окисляет металл. В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний. Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в инертной среде. Углекислота в баллончиках применяется в пневматическом оружии (в газобаллонной пневматике) и в качестве источника энергии для двигателей в авиамоделировании. Хранение углекислоты в стальном баллоне в сжиженном состоянии выгоднее, чем в виде газа. Углекислота имеет сравнительно низкую критическую температуру +31°С. В стандартный 40-литровый баллон заливают около 30 кг сжиженного углекислого газа, и при комнатной температуре в баллоне будет находиться жидкая фаза, а давление составит примерно 6 МПа (60 кгс/см²). Если температура будет выше +31°С, то углекислота перейдёт в сверхкритическое состояние с давлением выше 7,36 МПа. Стандартное рабочее давление для обычного 40-литрового баллона составляет 15 МПа (150 кгс/см²), однако он должен безопасно выдерживать давление в 1,5 раза выше, то есть 22,5 МПа,- таким образом, работа с подобными баллонами может считаться вполне безопасной. Твёрдая углекислота - «сухой лёд» - используется в качестве хладагента в лабораторных исследованиях, в розничной торговле, при ремонте оборудования (например: охлаждение одной из сопрягаемых деталей при посадке внатяг) и т. д. Для сжижения углекислого газа и получения сухого льда применяются углекислотные установки.

Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях - анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO 2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта. Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем. Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф. Для измерения низких концентраций CO 2 (а также CO) в технологических газах или в атмосферном воздухе можно использовать газохроматографический метод с метанатором и регистрацией на пламенно-ионизационном детекторе.

Ежегодные колебания концентрации атмосферной углекислоты на планете определяются, главным образом, растительностью средних (40-70°) широт Северного полушария. Вегетация в тропиках практически не зависит от сезона, сухой пояс пустынь 20-30° (обоих полушарий) дает малый вклад в круговорот углекислоты, а полосы суши, наиболее покрытые растительностью, расположены на Земле асимметрично (в Южном полушарии в средних широтах находится океан). Поэтому с марта по сентябрь вследствие фотосинтеза содержание CO 2 в атмосфере падает, а с октября по февраль - повышается. Вклад в зимний прирост дают как окисление древесины (гетеротрофное дыхание растений, гниение, разложение гумуса, лесные пожары), так и сжигание ископаемого топлива (угля, нефти, газа), заметно увеличивающееся в зимний сезон. Большое количество углекислоты растворено в океане. Углекислый газ составляет значительную часть атмосфер некоторых планет Солнечной системы: Венеры, Марса.

Углекислый газ нетоксичен, но по воздействию его повышенных концентраций в воздухе на воздуходышащие живые организмы его относят к удушающим газам (англ.)русск.. Незначительные повышения концентрации до 2-4 % в помещениях приводят к развитию у людей сонливости и слабости. Опасными концентрациями считаются уровни около 7-10 %, при которых развивается удушье, проявляющее себя в головной боли, головокружении, расстройстве слуха и в потере сознания (симптомы, сходные с симптомами высотной болезни), в зависимости от концентрации, в течение времени от нескольких минут до одного часа. При вдыхании воздуха с высокими концентрациями газа смерть наступает очень быстро от удушья. Хотя, фактически, даже концентрация 5-7 % CO2 не смертельна, уже при концентрации 0,1 % (такое содержание углекислого газа наблюдается в воздухе мегаполисов) люди начинают чувствовать слабость, сонливость. Это показывает, что даже при высоких содержаниях кислорода большая концентрация CO2 сильно влияет на самочувствие. Вдыхание воздуха с повышенной концентрацией этого газа не приводит к долговременным расстройствам здоровья и после удаления пострадавшего из загазованной атмосферы быстро наступает полное восстановление здоровья.

Как известно, все мы родом из детства. А одним из сладких воспоминаний первых лет жизни, который мы часто проносим через всю жизнь, является вкус сладкой газировки из бутылки. Для того чтобы дети и взрослые могли наслаждаться любимыми газированными напитками, и нужна углекислота в баллонах, которая посредством несложных манипуляций наполняет содержимое бутылки волшебными пузырьками. И нет большего удовольствия, чем взрывающиеся пузыри в носу, во рту, желудке... Мы растем, взрослеем. Начинаем отдавать предпочтение другим газированным и не газированным, но так же «бьющими» в нос и голову, напиткам. Но с возрастом, для нас часто так и остается загадкой ответ на вопрос:

А как же углекисота в баллонах оказывается в бутылке?

Углекислота - газ без цвета со слегка кисловатым вкусом, не токсичный, имеющий много названий таких как: двуокись углерода, диоксид углерода, угольный ангидрид, CO2 и другие. Этот газ не поддерживает дыхание и в больших концентрациях вызывает удушье, но имеет важнейшее значение в процессе метаболизма живых клеток. Его получают, как побочный продукт, при производстве спирта, аммиака или сжигания топлива. Плотность газа, при нормальных условиях, составляет 1,98 г/л. Поэтому транспортируется углекислота в баллонах под давлением около 70 атмосфер, для большей вместительности. Для сжатия газа используют специальное оборудование. На производстве газированной воды в бутылки с напитком, непосредственно перед закупоркой, добавляют кислоту из баллона. А если выпустить углекислоту в атмосферу, часть ее превратиться в сухой лед. Но продовольственная промышленность – это не единственная сфера, где используют углекислоту.

Где еще используется углекислота в баллонах?

Современное строительство полностью базируется на металлоконструкциях. Чтобы получить прочный металлический каркас, необходима сварка. Двуокись углерода является оксидом кислоты, который при взаимодействии с водой образует угольную кислоту. Вступает в реакцию со щелочами с выделением гидрокарбонатов и карбонатов. На этом свойстве кислоты и основывается ее применение в процесс сварки: углекислота в баллонах превращается в защитный слой, который обеспечивает прочность сварочного шва. Также углекислотой наполняют огнетушители, которые предназначены для тушения электроустановок.

И если вы решили купить баллон для газов , помните, что к ее транспортировке и использованию предъявляются особые требования. Работа с двуокисью углерода может быть опасна, например, при попадании на руки, может образоваться ожог.

Где можно купить баллон для газов?

Приобретение баллонов для хранения и транспортировки газов у неизвестных продавцов, которые не могут подтвердить свои права документально, не дает гарантии их безопасного применения! Безопасно купить баллон для газов от проверенных производителей можно у нас. Наши баллоны для транспортировки углекислоты бывают промышленного объема 50 л. и небольшие баллончики для сифона. Их безопасная эксплуатация обеспечивается изготовлением с учетом всех требований ГОСТов.

В таблице представлены теплофизические свойства углекислого газа CO 2 в зависимости от температуры и давления. Свойства в таблице указаны при температуре от 273 до 1273 К и давлении от 1 до 100 атм.

Рассмотрим такое важное свойство углекислого газа, как .
Плотность углекислого газа равна 1,913 кг/м 3 при нормальных условиях (при н.у.). По данным таблицы видно, что плотность углекислого газа существенно зависит от температуры и давления — при росте давления плотность CO 2 значительно увеличивается, а при повышении температуры газа — снижается. Так, при нагревании на 1000 градусов плотность углекислого газа уменьшается в 4,7 раза.

Однако, при увеличении давления углекислого газа, его плотность начинает расти, причем значительно сильнее, чем снижается при нагреве. Например при давлении и температуре 0°С плотность углекислого газа вырастает уже до значения 20,46 кг/м 3 .

Необходимо отметить, что рост давления газа приводит к пропорциональному увеличению значения его плотности, то есть при 10 атм. удельный вес углекислого газа в 10 раз больше, чем при нормальном атмосферном давлении.

В таблице приведены следующие теплофизические свойства углекислого газа:

  • плотность углекислого газа в кг/м 3 ;
  • удельная теплоемкость, кДж/(кг·град);
  • , Вт/(м·град);
  • динамическая вязкость, Па·с;
  • температуропроводность, м 2 /с;
  • кинематическая вязкость, м 2 /с;
  • число Прандтля.

Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100!

Теплофизические свойства углекислого газа CO 2 при атмосферном давлении

В таблице даны теплофизические свойства углекислого газа CO 2 в зависимости от температуры (в интервале от -75 до 1500°С) при атмосферном давлении. Даны следующие теплофизические свойства углекислого газа:

  • , Па·с;
  • коэффициент теплопроводности, Вт/(м·град);
  • число Прандтля.

По данным таблицы видно, что с ростом температуры теплопроводность и динамическая вязкость углекислого газа также увеличиваются. Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100!

Теплопроводность углекислого газа CO 2 в зависимости от температуры и давления

теплопроводности углекислого газа CO 2 в интервале температуры от 220 до 1400 К и при давлении от 1 до 600 атм. Данные выше черты в таблице относятся к жидкому CO 2 .

Следует отметить, что теплопроводность сжиженного углекислого газа при увеличении его температуры снижается , а при увеличении давления — растет. Углекислый газ (в газовый фазе) становится более теплопроводным, как при увеличении температуры, так и при росте его давления.

Теплопроводность в таблице дана в размерности Вт/(м·град). Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Теплопроводность углекислого газа CO 2 в критической области

В таблице представлены значения теплопроводности углекислого газа CO 2 в критической области в интервале температуры от 30 до 50°С и при давлении .
Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000! Теплопроводность в таблице указана в Вт/(м·град).

Теплопроводность диссоциированного углекислого газа CO 2 при высоких температурах

В таблице представлены значения теплопроводности диссоциированного углекислого газа CO 2 в интервале температуры от 1600 до 4000 К и при давлении от 0,01 до 100 атм. Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

В таблице представлены значения теплопроводности жидкого углекислого газа CO 2 на линии насыщения в зависимости от температуры.
Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!
Теплопроводность в таблице указана в Вт/(м·град).

Без цвета и запаха. Важнейший регулятор кровообращения и дыхания.

Не токсичен. Без него не было бы сдобных булочек и приятно колких газированных напитков.

Из этой статьи вы узнаете, что такое углекислый газ и как он влияет на организм человека.

Большинство из нас плохо помнят школьный курс физики и химии, но знают: газы невидимы и, как правило, неосязаемы, а потому коварны. Поэтому, прежде чем ответить на вопрос, вреден ли углекислый газ для организма, давайте вспомним, что он собой представляет.

Одеяло Земли

— двуокись углерода. Он же — углекислый газ, оксид углерода (IV) или угольный ангидрид. В нормальных условиях это бесцветный не имеющий запаха газ с кисловатым вкусом.

В условиях атмосферного давления двуокись углерода имеет два агрегатных состояния: газообразное (углекислый газ тяжелее воздуха, плохо растворяется в воде) и твёрдое (при -78 ºС превращается в сухой лёд).

Углекислый газ — один из главных составляющих окружающей среды. Он содержится в воздухе и подземных минеральных водах, выделяется при дыхании человека и животных, участвует в фотосинтезе растений.

Двуокись углерода активно влияет на климат. Она регулирует теплообмен планеты: пропускает ультрафиолет и блокирует инфракрасное излучение. В связи с этим углекислый газ порой называют одеялом Земли.

O2 — энергия. CO2 — искра

Двуокись углерода сопровождает человека на протяжении всей жизни. Будучи естественным регулятором дыхания и кровообращения, углекислый газ является неотъемлемым компонентом обмена веществ.


Делая вдох, человек наполняет лёгкие кислородом.

При этом в альвеолах (специальных «пузырьках» лёгких) происходит двусторонний обмен: кислород переходит в кровь, а углекислый газ выделяется из неё.

Человек выдыхает. CO2 — один из конечных продуктов метаболизма.

Говоря образно, кислород — это энергия, а углекислый газ — искра, разжигающая её.

Вдыхая около 30 литров кислорода в час, человек выделяет 20-25 литров углекислого газа.

Углекислый газ не менее важен для организма, чем кислород. Он является физиологическим стимулятором дыхания: влияет на кору головного мозга и стимулирует дыхательный центр. Сигналом для очередного вдоха служит не недостаток кислорода, а избыток углекислого газа. Ведь обмен веществ в клетках и тканях непрерывен, и нужно постоянно удалять его конечные продукты.

Кроме того, углекислый газ на секрецию гормонов, активность ферментов и скорость биохимических процессов.

Равновесие газообмена

Углекислый газ не токсичен, не взрывоопасен и абсолютно безвреден для людей. Однако для нормальной жизнедеятельности крайне важен баланс двуокиси углерода и кислорода. Недостаток и избыток углекислого газа в организме приводит к гипокапнии и гиперкапнии соответственно.

Гипокапния — недостаток СО2 в крови. Возникает в результате глубокого учащённого дыхания, когда в организм поступает больше кислорода, чем нужно. Например, во время слишком интенсивных физических нагрузок. Последствия могут быть различными: от лёгкого головокружения до потери сознания.

Гиперкапния — избыток СО2 в крови. Человек (вместе с кислородом, азотом, водяными парами и инертными газами) 0,04% углекислого газа, а выдыхает 4,4%. Если находиться в небольшом помещении с плохой вентиляцией, концентрация двуокиси углерода может превысить норму. Как следствие, может возникнуть головная боль, тошнота, сонливость. Но чаще всего гиперкапния сопутствует экстремальным ситуациям: неисправность дыхательного аппарата, задержка дыхания под водой и другим.

Таким образом, вопреки мнению большинства людей, углекислый газ в количествах, предусмотренных природой, необходим для жизни и здоровья человека. Кроме того, он нашёл широкое промышленное применение и приносит людям немало практической пользы.

Игристые пузырьки на службе поваров

СО2 используется во многих сферах. Но, пожалуй, наиболее востребован углекислый газ в пищевой промышленности и кулинарии.

Углекислый газ образуется в дрожжевом тесте под влиянием брожения. Именно его пузырьки разрыхляют тесто, делая его воздушным и увеличивая его объём.


С помощью углекислого газа делают различные освежающие напитки: квас, минеральную воду и другие любимые детьми и взрослыми газировки.

Эти напитки пользуются популярностью у миллионов потребителей во всём мире во многом из-за игристых пузырьков, которые так забавно лопаются в бокале и так приятно «колют» в носу.

Может ли углекислый газ, содержащийся в газированных напитках, способствовать гиперкапнии или нанести любой другой вред здоровому организму? Конечно, нет!

Во-первых, углекислый газ, который используется при приготовлении газированных напитков, специально подготовлен для применения в пищевой промышленности. В тех количествах, в которых он содержится в газировках, он абсолютно безвреден для организма здоровых людей.

Во-вторых, большая часть углекислого газа улетучивается сразу после откупоривания бутылки. Оставшиеся пузырьки «испаряются» в процессе питья, оставляя после себя лишь характерное шипение. В итоге в организм попадает ничтожно малое количество углекислого газа.

«Тогда почему врачи порой запрещают пить газированные напитки?» — спросите вы. По мнению кандидата медицинских наук, врача-гастроэнтеролога Алёны Александровны Тяжевой, это связано с тем, что существует ряд заболеваний желудочно-кишечного тракта, при которых предписывается специальная строгая диета. В список противопоказаний попадают не только напитки, содержащие газ, но и многие продукты питания.

Здоровый же человек без проблем может включить в свой рацион умеренное количество газированных напитков и время от времени позволять себе стаканчик той же колы.

Вывод

Углекислый газ необходим для поддержания жизни как планеты, так и отдельно взятого организма. СО2 влияет на климат, являясь своеобразным одеялом. Без него невозможен метаболизм: с углекислым газом из организма выходят продукты обмена. А ещё это незаменимый компонент любимых всеми газированных напитков. Именно углекислый газ создаёт игривые пузырьки, щекочущие в носу. При этом для здорового человека он абсолютно безопасен.

В промышленном масштабе углекислоту можно получить следующими способами:

  1. из известняка, в котором содержится до 40% СО 2 , кокса или антрацита до 18% CO 2 путем их обжига в специальных печах;
  2. на установках, работающих по сернокислому методу за счет реакций взаимодействия серной кислоты с эмульсией мела;
  3. из газов, образующихся при брожении спирта, пива, расщепления жиров;
  4. из дымовых газов промышленных котельных, сжигающих уголь, природный газ и другое топливо. Дымовой газ содержит 12-20% СО 2 ;
  5. из отходящих газов химических производств, в первую очередь синтетического аммиака и метанола. Отходящие газы содержат примерно 90% СО 2 .

На данный момент наиболее распространенным способом получения углекислоты является – получение из газов при брожении . Отходящий газ в этих случаях представляет собой почти чистый углекислый газ и является дешевым побочным продуктом производства.

На гидролизных заводах при брожении дрожжей с опилками выделяются газы, содержащие 99% CO 2 .

1 - бродильный чан; 2 - газгольдер; 3 - промывочная башня; 4 - предварительный компрессор; 5 - трубчатый холодильник; 6 - маслоотделитель; 7 - башня; 8 - башня; 9 - двухступенчатый компрессор; 10 - холодильник; 11 - маслоотделитель; 12 - цистерна.

Схема получения углекислого газа на гидролизных заводах

Газ из бродильного чана 1 подается насосами, а при наличии достаточного давления поступает самостоятельно в газгольдер 2, где происходит отделение от него твердых частиц. Затем газ поступает в промывочную башню 3, заполненную коксом или керамическими кольцами, где он омывается встречным потоком воды и окончательно освобождается от твердых частиц и растворимых в воде примесей. После промывки газ поступает в предварительный компрессор 4, где он сжимается до давления 400-550 кПа.

Так как при сжатии температура углекислого газа повышается до 90-100°С, то после компрессора газ поступает в трубчатый холодильник 5, где охлаждается до 15°С. Затем углекислота направляется в маслоотделитель 6, где отделяется масло, попавшее в газ при сжатии. После этого углекислый газ подвергается очистке водными растворами окислителей (KMnO 4 , K 2 Cr 2 P 7 , гипохромитом) в башне 7, а затем осушке активированным углем или силикагелем в башне 8.

После очистки и осушки углекислота поступает в двухступенчатый компрессор 9. На ступени I происходит сжатие его до 1-1,2 МПа. Затем углекислый газ поступает в холодильник 10, где охлаждается со 100 до 15°C, проходит маслоотделитель 11 и поступает на II ступень компрессора, где сжимается до 6-7 МПа, превращается в жидкую двуокись углерода и собирается в цистерну 12, из которой производится заправка стандартных баллонов или других емкостей (танков).

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то